SYNTHESIS AND CHARACTERIZATION OF HYDROLYSIS PALM KERNEL OIL-BASED POLYURETHANE

NURSYASHABILLAH BINTI NOR

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2017

This Final Year Project Report entitled **"Synthesis and Characterization of Hydrolysis Palm Kernel Oil-Based Polyurethane"** was submitted by Nursyashabillah Binti Nor, in partial fulfilment of requirements for the Degree of Bachelor of Science (Hons.) Chemistry, in the Faculty of Applied Sciences and was approved by

amil Mohamed Sapari Supervisor B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA Kuala Pilah Campus 72000 Kuala Pilah Negeri Sembilan

Nurul Huda binti Abdul Halim Project Coordinator B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA Kuala Pilah Campus 72000 Kuala Pilah Negeri Sembilan

Mazni Musa Head of Programme B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA Kuala Pilah Campus 72000 Kuala Pilah Negeri Sembilan

Date:

TABLE OF CONTENTS

ACI TAI	iii iv		
LIS	vi		
LIS	vii		
LIS	ix		
ABS	xi		
	STRAK		xii
CH	APTER	1 INTRODUCTION	1
1.1	Backg	ground of study	1
1.2	Proble	em statement	5
1.3	Signif	icance of study	6
1.4	Object	tives of study	7
СН	APTER	2 LITERATURE REVIEW	8
2.1	Introd	uction	8
2.2	Synthe	9	
		Vegetables oil	10
	2.2.2	Palm oil	11
		Castor oil	13
		Soy bean oil	14
	2.2.5	Palm kernel oil	15
2.3	Degra	dation of polyurethane	18
СН	APTER	3 METHODOLOGY	20
3.1	Mater	rials	20
		Raw materials	20
	3.1.2	Chemicals	20
		11	20
	Experimental method		21
	3.2.1	Synthesis of polyol PKO	21
	3.2.2	Preparation of PU controller	22
	3.2.3	Hydrolysis of PU	23
3.3	Characterization		25
	3.3.1	Morphology	25
	3.3.2	Viscosity	25
	3.3.3	FTIR spectroscopy analysis	26

3.3.3 FTIR spectroscopy analysis

CHAPTER 4: RESULTS AND DISCUSSION		
4.1	Synthesis of polyol PKO	27
4.2	Preparation of PU controller	31
4.3	Hydrolysis of PU	36
4.4	Morphology of PU structure	48
СН	APTER 5: CONCLUSION AND RECOMMENDATIONS	54
5.1	Conclusion	54
5.2	Recommendations	55
REFERENCES		56
APPENDIX		
AP	PENDIX I	62

64

.

CURRICULUM VITAE

ABSTRACT

SYNTHESIS AND CHARACTERIZATION OF HYDROLYSIS PALM KERNEL OIL-BASED POLYURETHANE

This study was conducted to investigate the hydrolysis reaction of rigid palmbased polyurethane. Rigid polyurethane (PU) was synthesized by using monoester-OH kernel oil (polyol). The resulting PU sample was immersed in an aqueous solution of sodium hydroxide (NaOH) concentrations of 0%, 10%, 20%, 30% and 40%. NaOH alkaline aqueous solution can accelerate the rate of hydrolysis. Samples of PU cake were hydrolysable and filtrate every 7, 14, 21 and 28 days. Weights taken showed mass of PU hydrolysable were rise when wet. It showed the PU swelled caused by the absorption of NaOH solution. After the sample is dried, cakes PU hydrolysable were taken its mass, and found its mass was reduced lower than the mass before the hydrolysis reaction is carried out. It showed part of the structure of the PU was degraded as a result of hydrolysis reaction. The higher the concentration of NaOH aqueous solution, the higher the mass of the material decomposes. FTIR spectroscopic analysis showed the decomposition of PU structure through loss absorption peak of C=O, C-O-C and C-N. Image analyzer optical microscope showed the structure of PU particle is reduced and the bond between the particles was damaged. SEM analysis also conducted towards PU control. The morphology of PU structures was porous after the reaction. Despite from that, it was concluded that the decomposition of PU through hydrolysis reaction causes termination chain of PU, in which the soft segment monoester-OH degrade, while the hard segment with cross-linked remained in the structure of the PU.