MALACHITE GREEN ADSORPTION ONTO PALM KERNEL SHELL ACTIVATED CARBON

HANIS FARZANA BINTI HAFIZUL

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2017
This Final Year Project Report entitled “Malachite Green Adsorption Onto Palm Kernel Shell Activated Carbon” was submitted by Hanis Farzana Hafizul, in partial fulfillment of the requirements for the Degree of Bachelor of Science (Hons.) Chemistry, in the Faculty of Applied Sciences, and was approved by

Nurul ‘Ain binti Jamion
Supervisor
Faculty of Applied Sciences
Universiti Teknologi MARA
Kuala Pilah Campus
72000 Kuala Pilah
Negeri Sembilan.

Nurul Huda binti Abdul Halim
Project Coordinator
B.Sc (Hons.) Chemistry
Faculty of Applied Sciences
Universiti Teknologi MARA
Kuala Pilah Campus
72000 Kuala Pilah
Negeri Sembilan.

Mazni binti Musa
Head of Programme
School of Chemistry and Environment
Faculty of Applied Sciences
Universiti Teknologi MARA
Kuala Pilah Campus
72000 Kuala Pilah
Negeri Sembilan.

Date: ______________________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ACKNOWLEDGEMENTS</th>
<th>iii</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>viii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ix</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>x</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION
1.1 Background of Study
1.2 Problem Statement
1.3 Objectives of Study
1.4 Significance of Study

CHAPTER 2 LITERATURE REVIEW
2.1 Activated Carbon
 2.1.1 Preparation of Activated Carbon
2.2 Palm Kernel Shell
2.3 Dye
 2.3.1 Natural Dye
 2.3.2 Synthetic Dye
 2.3.3 Malachite Green (MG)
2.4 Adsorption
 2.4.1 Adsorption Isotherm
 2.4.1.1 Freundlich Adsorption Isotherm
 2.4.1.2 Langmuir Adsorption Isotherm
2.5 Methods of Characterization
 2.5.1 Fourier-Transform Infrared (FTIR) Spectrometer
 2.5.2 Gravimetric Analysis
 2.5.3 Scanning Electron Microscope (SEM)
 2.5.4 Energy Dispersive X-ray Spectroscopy (EDX)
 2.5.5 Single Point Nitrogen Gas Adsorption Analysis
 2.5.6 Ultraviolet-Visible (UV-Vis)

CHAPTER 3 METHODOLOGY
3.1 Materials
 3.1.1 Raw Materials
 3.1.2 Chemicals
3.1.3 Apparatus 21

3.2 Preparation 22
 3.2.1 Preparation of Activated Carbon 22
 3.2.2 Preparation of MG (Malachite Green) Dye 23

3.3 Characterization of Prepared Activated Carbon 23
 3.3.1 Fourier-Transform Infrared (FTIR) Spectrometer 23
 3.3.2 Gravimetric Analysis 24
 3.3.3 Scanning Electron Microscope (SEM) and Energy Dispersive X-ray (EDX)
 3.3.4 Single Point Nitrogen Gas Adsorption Analysis 26

3.4 Adsorption Study 26
 3.4.1 Preparation of Calibration Curve for Malachite Green 26

3.5 Optimization Parameter of Adsorption Study 27
 3.5.1 Optimization Mass of PKSAC 27
 3.5.2 Optimization Contact Time 28
 3.5.3 Optimization MG Concentration 29
 3.5.4 Optimization Temperature 29
 3.5.5 Optimization pH 30

3.6 Adsorption Isotherm of MG on PKSAC Under Optimum Conditions 31

CHAPTER 4 RESULTS AND DISCUSSION 32

4.1 Preparation of Activated Carbon from Palm Kernel Shell 32

4.2 Characterization of PKSAC 33
 4.2.1 Fourier-Transform Infrared (FTIR) Spectrometer 33
 4.2.2 Gravimetric Analysis 36
 4.2.3 Scanning Electron Microscope (SEM) and Energy Disperse X-ray (EDX)
 4.2.4 Single Point Nitrogen Gas Adsorption Analysis 41

4.3 Adsorption Studies of PKSAC 42
 4.3.1 Effect of Mass of Adsorbent(PKSAC) 42
 4.3.2 Effect of Contact Time 45
 4.3.3 Effect of MG Concentration 46
 4.3.4 Effect of Temperature 48
 4.3.5 Effect of MG pH 49

4.4 Adsorption Isotherm 52

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 54

5.1 Conclusion 54

5.2 Recommendations 55

CITED REFERENCES 57

APPENDICES 63

CURRICULUM VITAE (CV) 74
Palm kernel shells (PKS) were used to prepare activated carbon by using phosphoric acid as activating agent. The PKS were through activation processes at high temperature, 800°C for two hours in muffle furnace. Characterization of the prepared activated carbon, palm kernel shell activated carbon (PKSAC) were studied by using Fourier-Transform Infrared (FTIR), gravimetric analysis, Scanning Electron Microscope (SEM) with Energy Dispersive X-ray (EDX) and single point nitrogen gas adsorption analysis. Based on the results obtained, PKSAC have highest carbon content rather than other element which was 73.73% and the BET surface area was 620.05 m²/g. In this study, the parameter that have been done to optimize malachite green adsorption was mass of adsorbent, contact time, MG concentration, temperature and pH. The optimization of MG adsorption for mass of adsorbent was 0.5 g, four hours for contact time at 100 ppm with temperature, 70°C at pH 10 which was in basic condition. The percentage of MG adsorption and the suitable of adsorption isotherm, Freundlich isotherm also was determined through this study. Hence, the PKSAC maybe have the ability to be an effective activated carbon for removing dye especially MG dye.