GENETIC POLYMORPHISM OF DRUG METABOLIZING ENZYMES AND ESTROGEN RECEPTOR IN PHARMACOGENETICS OF TAMOXIFEN: IMPLICATION FOR OPTIMIZATION OF BREAST CANCER TREATMENT

INSTITUT PENGURUSAN PENYELIDIKAN (RMI)
UNIVERSITI TEKNOLOGI MARA
40450 SHAH ALAM, SELANGOR
MALAYSIA

BY:
TEH LAY KEK
MOHD ZAKI SALLEH

DISEMBER 2010
PROJECT TEAM MEMBERS

ASSOCIATE PROF. DR TEH LAY KEK

Project Leader

[Signature]

PROF. DR. MOHD ZAKI SALLEH

Project Member

[Signature]
Abstract

Introduction: Tamoxifen has been used as a hormonal therapy in breast cancer patients who are positive for estrogen receptor. The drug is metabolized by Cytochrome P450 2D6 (CYP2D6) into several metabolite. Variation in CYP2D6 activity has important therapeutic consequences and can play a significant role in the development of adverse events or therapeutic failure in susceptible individuals. Beside, variation of drug transporter such as MDR1 may alter the accumulation of the drug and cause toxicity in patients. Furthermore, the different expression of receptor-α and estrogen receptor-β may be associated with different therapy outcome.

Materials and methods: In subject recruitment, patient samples were collected from HUKM, Hospital Selayang and HTAF. Patients who have received tamoxifen for treatment of breast cancer were recruited according to exclusion and inclusion criteria. Genotyping method for CYP2D6 and MDR1 were developed using multiplex allele specific PCR (ASPCR) approach. DHPLC method was developed to detect existing and new alleles in CYP2D6 and estrogen receptors. The expression of estrogen receptor-α and estrogen receptor-β from samples would be quantitated using Real-time PCR.

Result: The most common variants detected is CYP2D6*10 with 50% of heterozygous CYP2D6*1/*10 and CYP2D6*5 with 7.8% was detected high in breast cancer patients. Furthermore CYP2D6*1/*4 and CYP2D6*1/*4 was detected but at low frequencies.
Table of Contents

Abstract I
Acknowledgement III
Table of Contents IV
List of Table XI
List of Figure XII
List of Plates XV

Chapter 1 Literature Review and Introduction

1.1 Breast Cancer 1
1.2 Incidence of Breast Cancer in Malaysia 2
1.3 Hormonal Treatment for Breast Cancer 3
 1.3.1 Tamoxifen 3
 1.3.2 Metabolism of Tamoxifen 5
 1.3.3 Problems in Tamoxifen Treatment 6
1.4 Polymorphism of CYP2D6 9
1.5 Role of Drug Transporter In Breast cancer Treatment 14
 1.5.1 MDR1 Gene, P-gp and Tamoxifen 15
1.6 Estrogen Receptor 16
1.7 Statement of Problems 20
1.8 Objectives 21

Chapter 2 Study Design and Methodology

IV
Chapter 3 Development and Validation of Allele Specific PCR and dHPLC for CYP2D6 Variants Detection

3.1 Introduction

3.2 Materials

3.3 Methodology for Allele Specific PCR

3.3.1 Selection of Primers

3.3.2 Protocol for Detection of CYP2D6 variants

3.3.2.1 First PCR Master Mix Preparation

3.3.2.2 Allele Specific PCR Master Mix Preparation

3.4 Result

3.4.1 Integrity of the DNA

3.4.2 Amplification of Fragment A and B of First PCR

3.4.3 Amplification of CYP2D6 Variants

3.5 Validation of CYP2D6 Genotyping

3.6 Protocol for Detection of CYP2D6*2N and CYP2D6*5