UNIVERSITI TEKNOLOGI MARA

ACCURACY ASSESSMENT OF AUTOMATION OIL PALM TREE COUNTING USING ECOGNITION BASED OF UAV IMAGERY

FAIRUZ MAIZAN BINTI SAZELI

Thesis submitted in fulfillment of the requirements for the degree of **Bachelor Science of Geomatics**

Faculty of Architecture, Planning and Surveying

July 2018

AUTHOR'S DECLARATION

I declare that the work in this thesis/dissertation was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

:	Fairuz Maizan binti Sazeli
:	2015887496
	Bachelor of Surveying Science and Geomatics (Hons)-
:	AP220
:	Architecture, Planning & Surveying
	Accuracy Assessment of Automation Oil Palm Tree
•	Counting Using eCognition Based of UAV Imagery
:	
:	July 2018
	· · · · · · · ·

ABSTRACT

A good management of oil palm plantation become a growing concern as the demand on oil palm is increasing. The farmers need a high technological system that can make it easier to identify the number of oil palm in the plantation for the fertilizers and prediction of yield. There is already manual technique and automation technique in determining the number of oil palm trees exist but the manual technique is time consuming and more expensive. The existence of automation method has not been widely known by the farmers and the accuracy is not yet been verified. Therefore, the accuracy of automation technique should be verified as it can be beneficial to the agriculture sector. This research aim is to identify the accuracy of automation method in oil palm tree counting by using the result from manual digitizing as a verification subject to the automation technique. The data used in this research which is UAV imagery data has been obtained from Braintree company. This data is suitable to be used in this project as it provides high spatial resolution where the trees can be identified easily. The result analyzes whether the accuracy of automation method by manipulating five different threshold values approximately same as the accuracy of manual method. It is suggested that the result of one of the threshold value in the automation method has a high accuracy and can be used for oil palm tree counting.

TABLE OF CONTENTS

Page

CONFIRMATION BY PANEL OF EXAMINERS	i
AUTHOR'S DECLARATION	ii
SUPERVISOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	x
LIST OF ABBREVIATIONS	xi
CHAPTER ONE: INTRODUCTION	1
1.1 Introduction	1
1.2 Research Background	1
1.3 Research Gap	2
1.4 Problem Statement	3
1.5 Aim	4
1.6 Objectives	4
1.7 Research Question	4
1.8 Scope and Limitation of Work	5
1.8.1 Data Used	5
1.8.2 Software Used	5
1.8.2 Method	6
1.8.3 Study Area	6
1.9 Significant of Study	7
1.10 Conclusion	7
CHAPTER TWO: LITERATURE REVIEW	8
2.1 Introduction	8
2.2 Oil Palm (Elaies Guineensis)	8
vi	

	3.4.2.4 Export Vector Layer	29
3.5	Conclusion	30
CH	APTER FOUR: RESULT AND ANALYSIS	31
4.1	Introduction	31
4.2	Result for Manual Method	31
	4.2.1 Manual Method for Block A	32
	4.2.2 Manual Method for Block B	33
	4.2.3 Manual Method for Block C	34
	4.2.4 Manual Method for Block D	35
4.3	Result for Automation Method	36
	4.3.1 eCognition Method with the Threshold Value of 0.2	36
	4.3.3 eCognition Method with the Threshold Value of 0.4	37
	4.3.4 eCognition Method with the Threshold Value of 0.5	38
	4.3.5 eCognition Method with the Threshold Value of 0.6	39
4.4	Result for The Most Effective Threshold Value	39
	4.4.1 eCognition Method for Block A Using 0.3 Threshold Value	40
	4.4.2 eCognition Method for Block B Using 0.3 Threshold Value	41
	4.4.3 eCognition Method for Block C Using 0.3 Threshold Value	42
	4.4.4 eCognition Method for Block D Using 0.3 Threshold Value	43
4.5	Analysis for Manual Method	44
4.6	Analysis for Automation Method	44
4.7	Analysis for The Most Effective Threshold	46
4.6	Conclusion	46
CH	APTER FIVE: CONCLUSION AND RECOMMENDATIONS	47
5.1	Introduction	47
5.2	Conclusion	47
5.3	Recommendations	48
	5.3.1 Applicable on Another High-Resolution Images	48
	5.3.2 Exploration on Another Automation Method	48
	5.3.3 Familiarize eCognition Method to the User	48
RE	FERENCES	49
BIE	BLIOGRAPHY	52