UNIVERSITI TEKNOLOGI MARA

ANALYZING LAND SURFACE TEMPERATURE IN RESPONSE TO MASSIVE URBANIZATION BY USING SINGLE WINDOW ALGORITHM IN PENANG ISLAND

AINNA NAEEMAH BINTI ZAINAL ABIDIN

Thesis submitted in fulfillment of the requirements for the degree of **Bachelor Science of Geomatics**

Faculty of Architecture, Planning and Surveying

July 2018

AUTHOR'S DECLARATION

I declare that the work in this thesis/dissertation was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student : Ainna Naeemah Binti Zainal Abidin

Student I.D. No. : 2015831564

Bachelor of Surveying Science and

Programme : Geomatics (Honours) – AP220

Faculty : Architecture, Planning & Surveying

Analyzing Land Surface Temperature (LST)

Thesis/Dissertation Title : in response to massive urbanization by using

Single Window Algorithm in Penang Island

Signature of Student :

Date : July 2018

ABSTRACT

Large scales of human activities are continuously increasing the area which can be term as urban. Rapid urbanization indirectly may cause significant changes especially in Land Use Land Cover of particular area. Consequently, as cities been developed, changes may occur not only in term of physical landscape but also caused changes in building, road and other infrastructures which then will take over the area of open land and vegetation. When development of cities took place, consequently will increase the concentration of carbon dioxide in the atmosphere which in turn affecting the surface energy budget and indirectly may affect in global climate. Land Surface Temperature is one of the key parameters in order to estimate the surface energy budget assessing massive urbanization (Srivastava, Majumdar, Bhattacharya, 2010). Thus, this study has been conducted for the purpose of analyzing the relationship between Land Surface Temperature due to massive urbanization in Penang Island. In order to achieve the aim, several objective must be carried out which are including the classification process in order to identify urban area in Penang Island in both image. Next will be the extraction of Land Surface Temperature (LST) by using Spectral Radiance Model and Single Window Algorithm through the satellite imagery. Last objectives will be the analysis on the relationship between the dependent and independent variables that be made through the correlation coefficient analysis. This study involved the Landsat 5 TM and Landsat 8 OLI satellite imagery to be used as data to achieve the aim. Apart from classification process, Normalized Difference Built up Index (NDBI) is also been used for the aim of detecting urban area. Through the value obtained in regression analysis, strong positive relationship exist between Land Surface Temperature (LST) as it is proved it might be affect by massive urbanization in Penang Island.

TABLE OF CONTENT

	Page
CONFIRMATION BY PANEL OF EXAMINERS	i
AUTHOR'S DECLARATION	ii
SUPERVISOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENT	vi
LIST OF TABLES	x
LIST OF FIGURES	xi
LIST OF SYMBOLS	xii
LIST OF ABBREVIATIONS / NOMENCLATURE	xiii
CHAPTER ONE: INTRODUCTION	1
1.1 Introduction	1
1.2 Research Background	1
1.3 Research Gap	2
1.4 Problem Statement	3
1.5 Research Aim and Objectives	4
1.7 Research Question	4
1.8 Scope and Limitation of Work	5
1.8.1 Data Used	5
1.8.2 Software Used	6
1.8.3 Method Used	7
1.8.4 Study Area	9
1.9 Significant Study	10
1.10 Summary	11
	5-10
CHAPTER TWO: LITERATURE REVIEW	12
2.1 Introduction	12
2.2 The Concept of Urban Sprawl	12

	2.2.1 Urban Sprawi in Malaysia	13
	2.2.2 Urban Sprawl in Penang Island, Malaysia	13
2.3	Brief Review Regarding Land Surface Temperature (LST)	14
2.4	Remote Sensing Studies in Urban Sprawl Detection	15
	2.4.1 Disciplinary of Remote Sensing	16
	2.4.2 Satellite Imagery for Urban Sprawl identification	17
	2.4.3 Satellite Imagery Specification for Urban Sprawl Detection	18
2.5	The Extraction of Land Surface Temperature from Satellite Image	20
	2.5.1 Land Surface Temperature derived from Landsat 5 (TM)	21
	2.5.2 Land Surface Temperature (LST) derived from Landsat 8 (OLI)	22
2.6	Normalized Difference Index (NDBI)	23
2.7	Summary	24
CH	APTER THREE: METHODOLOGY	25
3.1	Introduction	25
3.2	Flow Chart	25
	3.2.1 Flow Chart of the methodology	26
	3.2.2 Elaboration of the Flow Chart of the Methodology	27
3.3	Preliminary Survey	27
3.4	Data Acquisition	28
3.5	Data Processing	28
	3.5.1 Data Preprocessing	29
	3.5.2 Image Enhancement	29
	3.5.3 Image Classification	30
	3.5.4 Normalized Difference Built-Up Index (NDBI)	31
	3.5.5 Land Surface Temperature derived from Landsat 5 (TM)	32
	3.5.6 Land Surface Temperature (LST) derived from Landsat 8 (OLI)	33
3.6	Result and Conclusion	34
3.7	Summary	35
CU	APTER FOUR: RESULT AND ANALYSIS	36
	Introduction	36
	Result of Pre-Processing Of the Image	36
7.4	result of the Hoessing of the mage	50