EFFECT OF METHANOL TO OIL MOLAR RATIO FOR BIODIESEL PRODUCTION FROM RUBBER SEED OIL USING ALUMINA SUPPORTED CALCIUM OXIDE

ABDUL MUQMIN BIN HAMZAH @ HUSAINI

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2017

ABSTRACT

EFFECT OF METHANOL TO OIL MOLAR RATIO FOR BIODIESEL PRODUCTION FROM RUBBER SEED OIL USING ALUMINA SUPPORTED CALCIUM OXIDE

Biodiesel is an alternative source of energy that is sustainable, renewable, biodegradable and has potential to replace petro-diesel fuel. The rubber seed oil contains free fatty acid (FFA) and also has potential to be used as biodiesel feedstock. The objective of this study is to determine the effect of methanol to oil molar ratio on the percent yield of biodiesel. The conversion of rubber seed oil to biodiesel by the process of transesterification reaction was studied. The catalyst that was used in this study was a heterogeneous base catalyst which was alumina supported calcium oxide, Al₂O₃-CaO. The characterization of the catalyst was conducted by using Field Emission Scanning Electron Microscope (FESEM) and Fourier Transform Infrared Spectroscopy (FTIR). The analysis of FTIR shows that the catalyst was produced successfully as there are presences of bands indicating the necessary functional group. FESEM analysis shows that the mixture of Al₂O₃-CaO was successfully done as the CaO supported the AbO3 well. The transesterification reaction was carried out in the fixed condition where the loading amount of catalyst was 1 g, the reaction temperature was 60 °C, three hour reaction time and 600 rpm for the agitation rate. The different molar ratio of methanol to oil studied were 3:1, 6:1, 9:1 and 12:1. The result shows some difference on the percentage yield of biodiesel. The optimum molar ratio is 9:1 that produced the highest percentage yield which was 77.1%. The types of fatty acids that present in the rubber seed oil was determined by using Gas Chromatography-Mass Spectrometry (GC-MS). The analysis of the GC-MS shows the present of stearic, oleic, palmitic, linolenic and linoleic acid in the rubber seed oil. As the conclusion, the catalyst AbO3-CaO has a good potential for producing biodiesel.

TABLE OF CONTENT

ACKNOWLEDGEMENTS TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS ABSTRACT ABSTRAK	Page iii iv vi vii viii ix x
CHAPTER 1 INTRODUCTION	
1.1 Background of study	1
1.2 Problem statement	4
1.3 Significance of study	5
1.4 Objective of study	6
CHAPTER 2 LITERATURE REVIEW	
2.1 Biodiesel as fuel alternative	7
2.2 Rubber seed	7
2.3 Transesterification	9
2.3.1 Types of reactions	9
2.4 Alcohol to oil molar ratio	12
2.5 Catalysts	13
2.5.1 Metal Oxides	13
2.5.2 Alkali earth metal oxides	13
2.5.3 Catalyst support	15
CHAPTER 3 METHODOLOGY	
3.1 Materials and chemicals	17
3.1.1 Raw material	17
3.1.2 Chemical	17
3.1.3 Instrument	17

	Page
3.2 Sample preparation	18
3.2.1 Sample collection	18
3.2.2 Soxhlet Extraction	18
3.3 Catalyst preparation	18
3.4 Transesterification reaction procedure	19
3.5 Analysis of ester phase	19
3.6 Characterization of catalyst using FESEM	20
3.7 Characterization of catalyst using FTIR	20

CHAPTER 4 RESULT AND DISCUSSION

4.1	Data analysis	21
4.2	Analysis using GC-MS	23
4.3	Characterization of catalyst	24
	4.3.1 Analysis using FESEM	24
į	4.3.2 Analysis using FTIR	26

CHAPTER 5 CONCLUSION AND RECOMMENI	DATIONS
5.1 Conclusion5.2 Recommendation	35 36
CITED REFERENCES APPENDICES	37 40
CURRICULUM VITAE	41

LIST OF TABLES

Table	Caption	Page
2.1	Properties of rubber seed oil in comparison with the other oils	8
4.1	Band position of spectrum Al ₂ O ₃	28
4.2	Band position of spectrum Al ₂ O ₃ -CaO	30
4.3	Band position of spectrum calcined Al ₂ O ₃ -CaO	32
4.4	Band position of spectrum uncalcined Al ₂ O ₃ -CaO	34