REMOVAL OF LEAD (Pb) BY USING SULPHURIC ACID H₂SO₄TREATED DURIAN (*DURIO ZIBETHINUS*) LEAF POWDER

NURUL AIDA BINTI ABDUL JABAR

.

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2017

ABSTRACT

REMOVAL OF LEAD (PB) BY USING SULPHURIC ACID H₂SO₄ TREATED Durio zibethinus LEAF POWDER

Ability to remove Pb(II) from aqueous solution by sulphuric acid modified durian leaves (SDLP) was evaluated. SDLP was characterized by using pH_{slurry} , pH_{zpc} analysis of biosorbent. The effect of physicochemical such as pH, adsorbent dosage, initial concentration of Pb(II) and contact time had been studied to obtain the optimum condition to remove Pb(II) ion from aqueous solution. The studies were conducted at pH 4 optimum, SDLP dosage 0.03 g, in contact time of 90 minutes and temperature of 30 °C. Kinetic data were analyzed by using two adsorption kinetic models which are pseudo-first-order and pseudo-second-order. The data showed high correlation coefficient based on pseudo-first-order model with R² between 0.998 to 0.999 rather than pseudo-first-order model.

TABLE OF CONTENTS

18

ACKNOWLEDGEMENT	iii
TABLE OF CONTENTS	iv
LIST OF TABLE	vi
LIST OF FIGURE	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	х
ABSTRAK	xi

CHAPTER 1 INTRODUCTION

1.1	Background	1
1.2	Problem statements	4
1.3	Significance of study	5
1.4	Objectives of study	6

CHAPTER 2 LITERATURE REVIEW

2.1	Absorptions	7
2.2	Plant	9
2.3	Agricultural	10
2.4	Leaves	11
2.5	Heavy metal	12

CHAPTER 3 METHODOLOGY

3.1	Materials		
	3.1.1	Raw materials	14
	3.1.2	Chemicals	14
	3.1.3	Instruments	15
3.2	Methods		
	3.2.1	Adsorbent Preparation	16
	3.2.2	Adsorption Characterization	17

3.2.3	Adsorption study	

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Adsor	Adsorbent characteristic			
	4.1.1	pH _{slurry}	22		
	4.1.2	pH _{zpc}	22		
4.2	Adsorption study				
	4.2.1	Effect of pH	24		
	4.2.2	Effect of dosage	25		
	4.2.3	Effect of initial concentration and contact time	26		
	4.2.4	Kinetic study	28		

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS

5.1	Conclusions	32
5.2	Recommendations	33
CITI	ED REFERENCES	34
APPENDICES		39
CURRICULUM VITAE		

LIST OF FIGURES

Figure	Caption	Page
4.1	Plot of pH _{zpc} for SDLP	23
4.2	Effect of pH on Pb(II) adsorption on SDLP	25
4.3	Effect of adsorbent dosage on Pb(II) adsorption by SDLP	26
4.4	Effect of initial Pb (II) ion concentration and contact time of Pb (II) ion adsorption of SDLP (adsorbent weight: 0.03 g, pH: 4, volume: 50 mL, shaking speed: 120 strokes per min	27
4.5	Pseudo-first-order plot on Pb(II) ions adsorption by SDLP (adsorption weight: 0.03 g, pH: 4, volume: 50 mL, shaking speed: 120 stroke per min)	29
4.6	Pseudo-second-order plot on Pb(II) ions adsorption by SDLP (adsorbent weight: 0.03 g, pH: 4, volume: 50 mL, shaking speed: 120 stroke per min)	30