NEUTRALIZATION OF ACIDIC PETROLUEM CRUDE OIL UTILIZING 2-METHYLIMIDAZOLE LIQIUD WITH AID OF Cu/Ce/Al₂O₃ CATALYST

. · · ·

HISYAM SAUFI BIN TAJUDIN

BACHELOR OF SCIENCE (HONS.) CHEMISTRY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

JANUARY 2017

ABSTRACT

Neutralization of Acidic Petroleum Crude Oil Utilizing 2-Methylimidazole with the Aid of Cu/Ce (10:90)/Al₂O₃ Catalyst

Naphthenic acid (NA) present in crude oil leads to corrosion problems within oil refineries. The objective of this study is to reduce total acid number (TAN) of petroleum crude oil using 2-methylimidazole with the aid of Cu/Ce (10:90)/Al₂O₃ catalyst through the catalytic deacidification technique. Catalytic deacidification is a fascinating process to reduce the naphthenic acids (NAs) concentration of acidic petroleum crude because these acids caused lower the quality of crude oils. Petronas Penapisan Melaka (PPM) crude oil with original Total Acid Number (TAN) of 2.43 mg KOH/g was used to test the performance of catalytic deacidification. A basic chemical with a dosing of 10% of 2-methylimidazole in ethanol solution was used as the acid removal agent. Cerium oxide based catalysts supported onto alumina prepared with different calcination temperatures of 800°C, 900°C and 1000°C. The potential catalyst was characterized by using TGA-DTG, FTIR and XRD for its physicochemical properties. The results showed TAN reduced to 0.53 mg KOH/g with 78.2% reduction by using Cu/Ce (10:90)/Al2O3 calcined at 900°C, 0.5% of catalyst loading (4 beads), reaction temperature at 27°C and reaction times of 10 minutes. The small particle size of catalyst calcined at 900°C which is 18.02 nm lead to bigger surface areas that enhance the catalytic deadicification process. These properties contributed to the excellent catalytic performance which remove the NAs in the PPM crude oil and concurrently reduced the TAN value below than one.

TABLE OF CONTENTS

		PAGE
AKNO	DWLEDGEMENT	i
TABL	E OF CONTENT	ü
LIST	OF TABLES	ü
LIST	OF FIGURES	iv
LIST	OF ABBREVIATIONS	v
ABST	RACT	viii
ABST	RAK	ix
CHAP	TER 1 INTRODUCTION	
1.1	Background of study	1
1.2	Problem statement of study	2
1.3	Significant of study	6
1.4	Objectives	8
CHAP	TER 2 LITERATURE REVIEW	
2.1	Napthenic acid removal	9
	2.1.1 Catalyic decarboxylation	10
	2.1.2 Liquid-liquid extraction	13
	2.1.3 Catalytic esterification	16
2.2	Catalyst charaterization	19
	, ,	
CHAP	TER 3 METHODOLOGY	
3.1	Materials and feedstock	26

3.2	Preparations of catalyst	26
3.3	Catalyst characterization	27

	3.3.1	X-Ray Diffraction	Spectroscopy (XRD)	28
	3.3.2	Fourier Transform	Infrared Spectroscopy (FTIR)	29
	3.3.3	Thermogravimetry	Analysis-(DTG)	30
3.4	Deacid	ification process		30
3.5	Total A	Acid Number (TAN)	determination	31

CHAPTER 4 RESULT AND DISCUSSION

.

4.1	Introduction	33
4.2	Thermogravimetry Analysis-(DTG)	33
4.3	X-ray Diffraction (XRD)	36
4.4	Fourier Transform Infrared Spectroscopy	40
4.5	Total Acid Number (TAN) for untreated crude oil	43
4.6	Effect reagent concentration towards TAN without catalyst	44
4.7	Effect of catalyst calcination temperature	47
4.8	Effect of catalyst loading	49
4.9	Effect of 2-methylimidazole concentration	50
4.10	Effect of reaction temperature	52
4.11	Effect of reaction time	54

CHAPTER 5 CONCLUSION AND RECOMMENDATION

5.1	Conclusion	57
5.2	Recommendation	59
CITI	ED REFERENCES	60
APP	PENDICES	64
CURICULUM VITAE		76

LIST OF FIGURE

Figure	Caption	Page
1.1	Structure of naphthenic acid	2
2.1	Flow chart of the liquid-liquid extraction procedure	14
2.2	The flow chart and fixed-bed esterification equipment	19
	esterification	
4.1	TGA-DTG thermogram of Cu/Ce (10:90)/Al ₂ O ₃ catalyst	34
4.2	The XRD diffractograms of Cu/Ce (10:90)/Al ₂ O ₃	38
	catalyst	
4.3	FTIR spectra of Cu/Ce (10:90)/Al ₂ O ₃ catalyst	42
4.4	Effect of different reagent concentration towards TAN	46
	value without presence of catalyst	
4.5	Effect of different calcination temperature towards TAN	48
	value	
4.6	Effect of different percentage of catalyst loading towards	50
	TAN value	
4.7	Effect of different concentration of reagent loading towards	51
	TAN value	
4.8	Effect of different reaction temperature towards	53
	TAN value	
4.9	Effect of the different reaction times on the TAN values	55

iv