DETERMINATION OF ASCORBIC ACID IN THE MULTIVITAMIN BY DIFFERENTIAL PULSE ANODIC STRIPPING VOLTAMMETRIC TECHNIQUE AT A GLASSY CARBON ELECTRODE

SITI NORBAITINA BT SHAARI

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2017

ABSTRACT

DETERMINATION OF ASCORBIC ACID IN THE MULTIVITAMIN BY DIFFERENTIAL PULSE ANODIC STRIPPING VOLTAMMETRIC TECHNIQUE AT A GLASSY CARBON ELECTRODE

Ascorbic acid cannot be synthesized by humans. This vitamin is rich in the varieties of vegetables and fruits. Nowadays, ascorbic acid has been transformed into multivitamin tablet which well-known as the dietary supplement. Growth in number of multivitamin tablet production increases curiosity among the researcher whether the content of ascorbic acid in the multivitamins dosage are in accordance with the standards and are safe to use by consumer. The differential pulse anodic stripping voltammetry (DPASV) technique using glassy carbon electrode (GCE) as the working electrode and phosphate buffer at pH 4.2 as the supporting electrolyte has been proposed to be developed. The experimental voltammetric parameters were optimized in order to obtain a maximum response with analytical validation of the technique. The optimum instrumental conditions for electroanalytical determination of ascorbic acid by the proposed DPASV technique were initial potential (E_i) = 0 V, final potential (E_f) = 0.7 V, accumulation time (t_{acc}) = 60 s, scan rate (v) = 0.125 V/s, accumulation potential (E_{acc}) = 0 V and pulse amplitude = 0.150 V. The curve was linear from 5 mg/L to 300 mg/L (R²=0.999) with detection limit of 0.25 mg/L. The precisions in terms of relative standard deviation (RSD) were 1.3%, 0.5% and 0.06%, respectively on the same day precision. The recoveries achieved for ascorbic acid

TABLE OF CONTENT

TABLE OF CONTENT		iv
LIST OF TABLE		ix
LIST OF FIGURE	y .	x
LIST OF SYMBOL	:	xi
LIST OF ABBREVATIONS	;	xii

CHAPTER I INTRODUCTION

1.1	Multivitamin And Its Beverages	1
1.2	Vitamin From The Natural Sources And Synthetic Vitamins	2
1.3	Ascorbic Acid	3
	1.3.1 Chemistry Of Ascorbic Acid	4
	1.3.2 Physical And Chemical Properties Of Ascorbic Acid	6
	1.3.3 Biological Function Of Ascorbic Acid	7
1.4	Problem Statement	7
1.5	Significant Of Study	8
1.6	Objective Of Study	9

CHAPTER II LITERARUTRE REVIEW

2.1	Analytical Methods For Ascorbic Acid Analysis In Pharmaceutical Sample	10
	2.1.1 Fluorimetry Method For The Ascorbic Acid Determination	10
	2.1.2 Spectrophotometry Method For The Ascorbic Acid Determination	11
	2.1.3 Chromatography Method For The Ascorbic Acid Determination	12
	2.1.4 Reverse-Flow-Injection Analysis (FIA) Method For The Ascorbic Acid Determination	14
	2.1.5 Amperometric Method For The Ascorbic Acid Determination	14
2.2	Voltammetry Method For The Ascorbic Acid Determination	15
2.3	Basic Principle In The Voltammetry Technique	18
	2.3.1 Working Electrode	19
	2.3.2 Auxiliary Electrode	20
	2.3.3 References Electrode	20
	2.3.4 Supporting Electrolyte	21
2.4	Types Of The Voltammetry Technique	21
	2.4.1 Stripping Voltammetry	21
	2.4.2 Differential Pulse Stripping	22

V

CHAPTER III MATERIAL AND METHOD

3.1	Materials	23
	3.1.1 Instrumentation	23
	3.1.2 Equipment And Apparatus	24
	3.1.3 Chemical And Reagents	24
3.2	Method	25
	3.2.1 Reagent And Chemical Preparation	25
	3.2.1.1 Reagent	25
	3.2.1.2 Ascorbic Acid Stock Solution	25
	3.2.1.3 Phosphate Buffer Solution	25
	3.2.2 General Procedure For Voltammetric Technique Analysis	26
	3.2.3 Differential Pulse Stripping Anodic Voltammetry (DPASV) Technique Of Ascorbic Acid Analysis	26
	3.2.3.1 Method Optimization	26
	3.2.3.1a Effect Of Accumulation Time (Tacc)	27
	3.2.3.1b Effect Of Scan Rate (v)	27
	3.2.3.1c Effect Of Accumulation Potential (Eacc)	27
	3.3.3.1d Effect Of Pulse Amplitude	27
	3.2.3.2 Method Validation	27
	3.2.3.2a Linearity	28
	3.2.3.2b Limit Of Detection (LOD) And Limit Of Quantification (LOQ)	28
	3.2.3.2c Precision	28
	3.2.3.2d Accuracy	28
	3.3.3.2e Ruggedness	29
	3.2.4 Samples Collection And Pre-Treatments	29
	3.2.5 Recovery Of Ascorbic Acid Standard In The Multivitamin Tablet	29