DEACIDIFICATION OF PETROLEUM CRUDE OIL BY USING 2-METHYLIMIDAZOLE WITH THE AID OF Ca/Cu/Al₂O₃ CATALYST

MUHAMMAD AMIRRUL HAKIM BIN LOKMAN NOLHAKIM

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry In the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2017

ABSTRACT

Deacidification Petroleum Crude Oil Utilizing 2-methylimidazole with Aid of Cu/Ca(10:90)/Al₂O₃ Catalyst

The naphthenic acids (NA) found in petroleum may cause serious corrosion problems for processing equipment. To reduce total acid number (TAN) from crude oil sample, catalytic deacidification with the aid of Cu/Ca/Al2O3 catalyst and 2-methylimidazole was introduced. Catalytic deacidification is a method to reduce TAN and reduce the NA concentration on the acidic crude oil sample from PETRONAS Penapisan Melaka with the original TAN of 2.43 mg KOH/g. A basic chemical with dosing 9% of 2-methylimidazole in ethanol solution was used as the acid removal agent. Calcium oxide based catalyst supported onto alumina prepared with different calcination temperature of 900°C, 1000°C and 1100°C. FTIR, TGA-DTG and XRD was used for potential catalyst to observed the physicochemical properties. The result shows TAN reduction from 2.43 mg KOH/g to 0.2 mg KOH/g which 92% reduction for PETRONAS Penapisan Melaka crude oil using Cu/Ca/Al₂O₃ catalyst calcined at 1000°C, 0.4% of catalyst loading (3 beads), reaction temperature at 27°C and 10 minutes reaction times. The catalyst have the small particle size that provide bigger surface area to enhance the catalytic performance which remove the NA in the PETRONAS Penapisan Melaka crude oil and as a conclusion the TAN value can achieved below than 1 mg KOH/g.

TABLE OF CONTENTS

ACKNOWLEDMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTRAK	х

CHAPTER 1 INTRODUCTION

1.1	Background and problem statement	1
1.2	Significant of study	5
1.3	Objectives	5

CHAPTER 2 LITERATURE REVIEW

2.1	Napthenic acid removal		7
	2.1.1	Catalytic Decarboxylation	7
	2.1.2	Liquid-liquid Extraction	9
	2.1.3	Caustic Washing	10
	2.1.4	Catalytic Esterification	11
2.2	Cataly	st characterization	14

CHAPTER 3 METHODOLOGY

3.1	Mater	ials and feedstock	18
3.2		ration of catalyst	18
3.3	2 - 2	vst characterization	19
	3.3.1	Fourier Transform Infrared Spectroscopy (FTIR)	19
	3.3.2	Thermogravimetric Analysis (TGA)	20
	3.3.3	X-Ray Diffraction Spectroscoly (XRD)	21
3.4	Deaci	dification process	22
3.5	Total	Acid Number (TAN) determination	22

CHAOTER 4 RESULTS AND DISCUSSION

4.1	Catalyst Characterization	24
	4.1.1 Fourier Transform Infrared Spectroscopy (FTIR)	24
	4.1.2 Thermogravimetric Analysis (TGA)	27
	4.1.3 X-Ray Diffraction Spectroscoly (XRD)	29
4.2	Total Acid Number (TAN) for untreated crude oil	32

4.3	Effect of reagent concentration towards crude oil without	33
	Catalyst	
4.4	Effect of calcination temperature	34
4.5	Effect of catalyst loading	36
4.6	Effect of reagent concentration	38
4.7	Effect on reaction temperature	40
4.8	Effect on reaction time	41

CHA	APTER 5 CONCLUSION AND RECOMMENDAT	ΓIONS
5.1	Conclusion	43
5.2	Recommendations	44
	ED REFERENCES	46
APP	ENDICES	50

57

CURRICULUM VITAE

LIST OF FIGURE

Figure	Caption	Page
1.1	General Molecular Structure for NA	2
4.1	FTIR spectra of Cu/Ca (10:90)/Al2O3 catalyst at	24
	calcination temperatures of 1000°C before and after	
	reaction	
4.2	TGA-DTG thermogram of Cu/Ca/Al ₂ O ₃ catalyst after	27
	aging inn an oven ~100Oc for 24 hours.	
4.3	The XRD patterns of Cu/Ca/Al2O3 calcined at a) 900, b)	29
	1000 and c) 1100°C.	
4.4	Effect of different concentrations of 2-methylimidazole	32
	on the reduction of total acid number of PPM crude oil	
4.5	Effect of the various calcination temperature towards the	34
	removal of TAN value based on amount of catalyst	
	loading for 10 minutes reaction times.	
4.6	Effect on catalyst loading towards removal of TAN	36
	based on 1000°C calcination temperature.	
4.7	Effect of reagent concentration on the reduction TAN	38
	value using 0.40% of Cu/Ca(10:90)/Al ₂ O ₃ catalyst for 10	
	minutes times	
4.8	Effect of various reaction temperatures on the TAN value	39
	using for 0.4% Cu/Ca (10:90)/Al ₂ O ₃ catalyst loading at	
	10 minutes reaction time.	
4.9	Effect of reaction time towards reduction of TAN value	40
	using 0.4% Cu/Ca (10:90)/Al ₂ O ₃ catalyst calcined at	
	1000°C	