PHYTOCHEMICAL SCREENING, ANTIBACTERIAL AND ANTIFUNGAL ACTIVITY OF *PITHECELLOBIUM JIRINGA* TWIGS

NOR SYAIRAH BINTI JAMAL

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry In the Faculty of Applied Science Universiti Teknologi MARA

JANUARY 2017
ABSTRACT

PHYTOCHEMICAL SCREENING, ANTIBACTERIAL AND ANTIFUNGAL ACTIVITY OF PITHECELLOBIUM JIRINGA TWIGS

The aim of this study was to investigate the phytochemical analysis, antibacterial and antifungal activity with three different crude extracts; hexane extract, ethyl acetate extract and methanol extract in *P. jiringa* twigs. The properties of *P. jiringa* twigs were discovered and observed with several tests and analysis. The study on phytochemical screening revealed the presence of secondary metabolites such as alkaloids, flavonoids, tannins, terpenoids and saponins in *P. jiringa* twigs that indicating the potential of plant as traditional medicines. These chemical constituents also found in TLC by using different conditions such as Vanillin/H$_2$SO$_4$ reagent, FeCl$_3$ reagent, Dragendorff’s reagent, evaporated iodine vapour, UV (254 nm) and UV (360 nm) that indicated different chemical compounds. The antibacterial and antifungal properties were determined by using disc diffusion method with different concentrations of solvent extractions against two gram-positive bacterial strains: *Staphylococcus aureus*, *Staphylococcus epidermidis* and fungi yeast *Candida albicans*. These microorganisms have a potential to cause some disease such as pneumonia, catheter infections and yeast infection in the vagina. The result showed that the crude extract of the *P. jiringa* twigs can inhibit the microbial growth of *S. aureus* and *S. epidermidis* but not able to inhibited on *C. albicans*. The methanol extract showed higher or active inhibition on microorganisms compared with ethyl acetate extracts. The bioautography assay was tested to prove the existence of secondary metabolites in the plant that have potential to inhibit the microorganisms. Therefore, in this study revealed that *P. jiringa* twigs have a potential to acts as antimicrobial or therapeutic agent and potential as alternative to current antibiotics.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS ii
TABLE OF CONTENTS iii
LIST OF TABLES v
LIST OF FIGURES vii
LIST OF ABBREVIATIONS ix
ABSTRACT x
ABSTRAK xi

CHAPTER 1 INTRODUCTION
1.1 Background of study 1
1.2 Problem statement 3
1.3 Significant of study 4
1.4 Objectives of study 5

CHAPTER 2 LITERATURE REVIEW
2.1 Introduction 6
2.2 Type of solvents 8
2.2.1 Hexane 8
2.2.2 Ethyl Acetate 8
2.2.3 Methanol 10
2.3 Plants act as antibacterial 11
2.4 Plants act as antifungal 12
2.5 *Pithecellobium jiringa* 13

CHAPTER 3 METHODOLOGY
3.1 Materials 15
3.1.1 Raw Material 15
3.1.2 Chemicals 15
3.1.3 Microorganisms 15
3.1.4 Apparatus 16
3.2 Preparations of extracts 17
3.2.1 Sample collection 17
3.2.2 Preparations of crude extracts 17
3.2.2.1 Preparation of hexane extract 17
3.2.2.2 Preparation of ethyl acetate extract 18
3.2.2.3 Preparations of methanol extract 18
3.3 Phytochemical analysis 18
3.3.1 Phytochemical Screening 18
3.3.1.1 Test of Alkaloids 18
3.3.1.2 Test of Saponins 19
3.3.1.3 Test of Flavonoids 19
3.3.1.4 Test of Tannins 19
3.3.1.5 Test of Terpenoids (Salkowski test) 20
3.3.2 TLC analysis
3.4 FTIR analysis
3.5 Antibacterial and Antifungal activity
 3.5.1 Test organism
 3.5.2 Agar preparation
 3.5.3 Microbiological assay
 3.5.3.1 Preparation of test solution
 3.5.3.2 Preparation of antifungal inoculums
 3.5.3.3 Preparation of antibacterial inoculums
 3.5.4 Agar overlay bioautographic assay
 3.5.4.1 Thin Layer Chromatography (TLC) preparation.
 3.5.4.2 Preparation of the Thin Layer Agar
 3.5.5 Staining the bioautogram

CHAPTER 4 RESULTS AND DISCUSSION
4.1 Phytochemical screening
4.2 TLC profile of hexane, ethyl acetate and methanol extracts
4.3 FTIR analysis
 4.3.1 Hexane extract
 4.3.2 Ethyl acetate extract
 4.3.3 Methanol extract
4.4 Antibacterial and antifungal activity of the crude extracts in Pithecellobium jiringa twigs.
 4.4.1 Antibacterial
 4.4.2 Antifungal
4.5 Agar overlay bioautography assay of antibacterial and antifungal activity of the crude extract in twigs of Pithecellobium jiringa

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

CITED REFERENCES
APPENDICES
CURRICULUM VITAE
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Caption</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Phytochemical screening of Annona reticulate leaves used extraction of ethyl acetate</td>
<td>10</td>
</tr>
<tr>
<td>4.1</td>
<td>Compounds presences in P. jiringa twigs crude extracts</td>
<td>29</td>
</tr>
<tr>
<td>4.2</td>
<td>TLC test for hexane extract of Pithecellobium jiringa twigs</td>
<td>35</td>
</tr>
<tr>
<td>4.3</td>
<td>TLC test for ethyl acetate extract of Pithecellobium jiringa twigs</td>
<td>38</td>
</tr>
<tr>
<td>4.4</td>
<td>TLC test for methanol extract of Pithecellobium jiringa twigs</td>
<td>41</td>
</tr>
<tr>
<td>4.5</td>
<td>Functional group in hexane extract of P. jiringa twigs</td>
<td>44</td>
</tr>
<tr>
<td>4.6</td>
<td>Functional group in ethyl acetate extract of P. jiringa twigs</td>
<td>47</td>
</tr>
<tr>
<td>4.7</td>
<td>Functional group in methanol extract of P. jiringa twigs</td>
<td>49</td>
</tr>
<tr>
<td>4.8</td>
<td>The average diameter of inhibition zone</td>
<td>51</td>
</tr>
<tr>
<td>4.9</td>
<td>Diameter of inhibition zone of antibacterial activity for ethyl acetate and methanol extract of P. jiringa twigs.</td>
<td>54</td>
</tr>
<tr>
<td>4.10</td>
<td>Diameter of inhibition zone of antibacterial activity for Staphylococcus epidermidis for ethyl acetate and methanol extract of P. jiringa twigs.</td>
<td>55</td>
</tr>
<tr>
<td>4.11</td>
<td>Diameter of inhibition zone of antifungal activity for ethyl acetate and methanol extract of P. jiringa twigs.</td>
<td>58</td>
</tr>
<tr>
<td>4.12</td>
<td>Compounds that affect inhibition zone of antibacterial activity by bioautographic assay of all P. jiringa twigs extracts.</td>
<td>63</td>
</tr>
</tbody>
</table>