COMPARATIVE STUDY OF PHOTODEGRADATION OF ORANGE BY SOLAR AND FENTON PROCESS

WAN ABDUL RAHIM BIN WAN MUSA

BACHELOR OF SCIENCE (Hons.) CHEMISTRY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

JANUARY 2017

ABSTRACT

COMPARATIVE STUDY OF PHOTODEGRADATION OF ORANGE G BY SOLAR AND FENTON PROCESS

Wastewater is exhausted in large volume every year due to the processes of textile industries such as dyeing and finishing processes. Nowadays, more than 50% of dyes used in textile industry are Azo-based dyes. Inorganic salts improve the coloration of the dye, which enhances the pollution load of wastewater from textile industries. Degradation of the reactive textile dye Orange Gelb (OG) was studied using Fenton's Reagent of Advanced Oxidation Processes (AOPs) and solar photo catalytic by TiO2. A laboratory set-up was designed to evaluate the effectiveness for both treatment.. The initial concentration of OG in the reaction was 5 ppm. The effects of irradiation time and the condition of pH dye and concentrations of catalyst (TiO₂, H₂O₂ and FeSO₄) on the degree of degradation efficiency were studied. The results indicated that photo-Fenton's process is more effective than solar photo degradation by TiO₂. The degradation effectiveness of Fenton's procedure was up to 79.22% in 2 hour rate at pH 3 and in 3.1 x 10^{-2} M, while the degradation efficiency of TiO₂ was just up 19.75% at pH6 and in 5 ppm. The degradation effectiveness of Fenton process increased as the concentration of OG dye decreased, the concentration of H2O2 increased, concentration of FeSO4 increased and pH value get decreased which is in more acidic. While for photo degradation for TiO2, the best degradation happened when TiO2 concentration increased, concentration of OG dve decreased, and ph value increased.

TABLE OF CONTENTS

	PAGE
ACKNOWLEDGEMENT	ü
TABLE OF CONTENTS	iv
LIST OF TABLES	v
LIST OF FIGURES	vi
LIST OF ABBREVIATIONS	vii
ABSTRACT	ix
ABSTRAK	x

CHAPTER 1 INTRODUCTION

1.1	Background of Study	1
1.2	Problem Statement	3
1.3	Objectives of the Study	4
1.4	Significance of Study	5

CHAPTER 2 LITERATURE REVIEW

2.1	Water pollution	6
2.2	Fenton process	7
2.3	Titanium dioxide	9

CHAPTER 3 METHODOLOGY

3.1	Materials	12
3.2	Instruments	12
3.3	Methods	12
3.4	Preparation of Orange G sample	13
3.5	Preparation of FeSO ₄	13
3.6	Preparation of Hydrogen Peroxide H ₂ O ₂	14
3.7	Photo degradation process by TiO ₂	14
3.8	Photo degradation process by Fenton reagent	15

CHAPTER 4 RESULT AND DISCUSSION

4.1	Standard Measurement	17
4.2	Orange G Degradation Under Fenton's Reagent	17
4.3	Effect Of Variation Of Ph By Fenton Reagent	19
4.4	Effect Of Variation In OG Concentration In Fenton Reagent	21
4.5	Effect of variation in concentration of H ₂ O ₂ in Fenton	22
	Reagent	
4.6	Effect of variation in concentration of FeSO ₄	24
4.7	Effect of variation of pH for TiO ₂	26
4.8	Effect of different Concentration of OG dye with TiO_2	28
4.9	Effect of different mass of TiO ₂ in OG dye	30

LIST OF TABLES

Table	Caption	Page
2.1	Formation of hydroxyl radical in different AOPS	11
4.2	Standard measurement	17
4.3	Data (%) pH degradation Efficiencies	19
4.4	Data (%) OG concentration degradation efficiencies	21
4.5	Data (%) H_2O_2 concentration degradation efficiencies	23
4.6	Data (%) FeSO ₄ concentration degradation efficiencies	25
4.7	Data (%) pH degradation Efficiencies for TiO ₂	27
4.8	Data (%) OG concentration degradation Efficiencies for TiO ₂	29
4.9	Data (%) OG mass degradation Efficiencies for	31

TiO₂