REMOVAL OF NAPHTENIC ACID FROM PETROLUEM CRUDE OIL UTILIZING 2-METHYLIMIDAZOLE LIQUID WITH THE AID OF Ca/Al₂O₃ AND Ce/Al₂O₃ CATALYST

AMIER KHAIRAN BIN SHAIDI

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2017

ABSTRACT

REMOVAL OF NAPHTENIC ACID FROM PETROLEUM CRUDE OIL UTILIZING 2-METHYLIMIDAZOLE WITH THE AID OF Ca/Al₂O₃ and Ce/Al₂O₃ CATALYST

Naphthenic acid (NA) is a carboxylic acid derivative compound commonly found in the petroleum crude oil. The presence of these compounds contributes to the acidity of crude oils and is one of the major sources of corrosion in oil pipelines and distillation units in crude oil refineries. Removing NA compounds from crude oils is regarded as one of the most crucial processes in heavy oil upgrading. In order to overcome this problem, catalytic deacidification method had been developed and used to reduce the total acid number values in crude oil. In this study, crude oil from Petronas Penapisan Melaka were investigated. The parameters used in this study were different catalyst calcination temperatures, catalyst loading, concentration reagent, reaction times and reaction temperature. 2-methylimidazole and ethanol was used as acid removal agent and monometallic calcium and cerium doped with alumina as a catalyst. The results showed that with the catalyst, the reduction of original TAN that was 2.43 mg KOH/g can be reduced to lower than 1 mg KOH/g. Ca/Al₂O₃ with a calcination temperature of 900°C gave a better reduction than Ce/Al₂O₃ with a calcination temperature of 900°C with 83.54% of TAN reduction (2.43 to 0.4) for Ca/Al₂O₃ catalyst and 71.19% (2.43 to 0.7) for Ce/Al₂O₃ catalyst. The best catalyst underwent several characterization methods such as X-Ray Diffraction Spectroscopy (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Thermogravimetry Analysis (TGA-DTA) for its physicochemical properties. It can be concluded that catalytic deacidification method was efficient and effective in removing NA from the crude oil thus lowering the TAN value less than 1 mg KOH/g.

TABLE OF CONTENTS

		Page		
ACKNOWLEDGEMENTS TABLE OF CONTENT				
				LIST
LIST OF FIGURES				
LIST OF ABBREVIATIONS ABSTRACT				
			ABS	TRAK
CHA	APTER 1 INTRODUCTION	1		
1.1	Background of study	1		
1.2	Problem statement	3		
1.3	Significant of study	4		
1.4	Objectives	5		
CHA	APTER 2 LITERATURE REVIEW	6		
2.1	Napthenic acid removal	6		
	2.1.1 Catalyic decarboxylation	7		
	2.1.2 Catalytic esterification	10		
	2.1.3 Liquid-liquid extraction	13		
2.2	Catalyst charaterization	14		
CHAPTER 3 METHODOLOGY		19		
3.1	Materials and feedstock	19		
3.2	Preparations of catalyst			
3.3	Catalyst characterization	20		
	3.3.1 X-Ray Diffraction Spectroscopy (XRD)	21		
	3.3.2 Fourier Transform Infrared Spectroscopy (FTIR)	22		

-

	3.3.3 Thermogravimetry Analysis	22
3.4	Deacidification process	23
3.5	Total Acid Number (TAN) determination	24
CHAPTER 4 RESULTS AND DISCUSSION		
4.1	Catalyst characterization	25
	4.1.1 Fourier Transform Infrared Spectroscopy (FTIR)	25
	4.1.2 X-Ray Diffraction Spectroscopy (XRD)	28
	4.1.3 Thermogravimetry Analysis	30
4.2	Total Acid Number (TAN) for untreated crude oil	32
4.3	Effect of Ca/Al ₂ O ₃ and Ce/Al ₂ O ₃ catalyst loading	34
4.4	Effect on calcination temperature	37
4.5	Effect on reagent concentration	39
4.6	Effect on reaction time	40
4.7	Effect of reaction temperature	42
CHAPTER 5 CONCLUSION AND RECOMMENDATIONS		
5.1	Conclusion	45
5.2	Recommendations	47
CITED REFERENCES		
APPENDICES		51
CURRICULUM VITAE		57

LIST OF FIGURES

Figures	Caption	Page
1.1	Structure of naphthenic acid	2
4.1	FTIR spectra of Ca/Al ₂ O ₃ catalyst at calcination temperatures of 900°C before reaction and affer reaction	26
4.2	The XRD diffractograms of Ca/Al ₂ O ₃ catalyst calcined at 800°C, 900°C and 1000°C	29
4.3	Thermogram of Ca/Al ₂ O ₃ catalyst after aging in an oven for 24h at 80–90°C. Temperature (°C) versus Weight Losses (%)	31
4.4	Effect on 2-methylimidazole concentration towards TAN value of PPM crude oil	33
4.5	Effect on catalyst loading towards TAN value of PPM crude oil	36
4.6	Effect on calcination temperature towards TAN value of PPM crude oil	38
4.7	Effect on reagent concentration towards TAN value of PPM crude oil	40
4.8	Effect on reaction time towards TAN value of PPM crude oil	41
4.9	Effect on reaction temperature towards TAN value or PPM crude oil	43

•