THE FLUX PINNING PROPERTIES OF YTTRIUM SUBSTITUTION IN Bi-2223 SUPERCONDUCTOR

SITI SARAH BINTI NORDIN

Final Year Project Report Submitted in Partial Fulfillment of the Requirement for the Degree of Bachelor of Science (Hons.) Physics in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2017

ABSTRACT

THE FLUX PINNING PROPERTIES OF YTTRIUM SUBSTITUTION IN Bi-2223 SUPERCONDUCTOR

This report present the study of flux pinning properties as well as the superconducting properties of Bi_{1.6-x}Y_xPb_{0.4}Sr₂Ca₂Cu₃O superconductor. The samples with varying value of Y (x = 0.00, 0.02, 0.05, 0.10 and 0.20) were prepared by using solid state method. The samples were characterized by using four point probe and X-ray diffraction (XRD). The critical temperature, Tc and critical current density, J_c measurement were done using four point probe method without applied magnetic field. Pure sample (x = 0.00) was observed to have the highest value of T_c and J_c. The T_{c(onset)} and T_{c(zero)} for pure sample are 111 K and 97 K respectively. The J_c value for pure sample is 1.590 A/cm² at temperature 40 K. The flux pinning properties were observed using four point probe method with applied magnetic field varying from 0.00T to 0.33T. The J_c-B characteristic show that pure sample has better flux pinning properties compared to other samples and has the better peak position of F_p/F_pmax in the magnetic field. The XRD pattern shows that all samples exhibit orthorhombic structure and peak at $2\theta = 26^{\circ}$ is being diminished at x = 0.10 and 0.20. From the results, it is show that yttrium substituted samples reduced the superconducting properties and as well as the flux pinning properties of the Bi-2223 superconductor.

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTRAK	X

CHAPTER 1: INTRODUCTION

1.1	Background study	1
1.2	Problem Statement	6
1.3	Significance of study	7
1.4	Objectives of the study	7
1.5	Scope and Limitation	8

CHAPTER 2: LITERATURE REVIEW

Superconductor		9
Bismuth Strontium Calcium Copper Oxide (BSCCO)		10
Bi-2223 Superconductor		11
Doping Effect		12
Yittrium		13
Flux Pinning Mechanism		14
	Bismuth Strontium Calcium Copper Oxide (BSCCO) Bi-2223 Superconductor Doping Effect Yittrium	Bismuth Strontium Calcium Copper Oxide (BSCCO) Bi-2223 Superconductor Doping Effect Yittrium

CHAPTER 3: METHODOLOGY

3.1	Preparation of Bi-Y-Pb-Sr-Ca-Cu-O sample	15
3.2	Flowchart for sample preparation	16
3.3	Materials	17
3.4	Apparatus and Instruments	17
3.5	Sample Preparation	18
3.6	.6 Characterization Method	
	3.6.1 Four-point probe measurement	21
	3.6.2 X-ray Powder Diffraction (XRD)	23

CHAPTER 4: RESULTS AND DISCUSSION

4.1	X-ray Diffraction (XRD) Analysis	24
4.2	Four Point Probe Measurement Analysis	
	4.2.1 Critical Temperature, T _c	27
	4.2.2 Critical Current Density, Jc	30
4.3	Flux Pinning Properties Analysis	33

CHAPTER 5: CONCLUSION AND RECOMMENDATION

5.1	Conclusion	37
5.2	Recommendation	38
	FEDENCES	20

REI ERENCED	57
APPENDICES	41
CURRICULUM VITAE	44

v

LIST OF TABLES

Table	Caption	Page
3.5.1	Molecular mass ratio for $Bi_{1.6-x}Y_xPb_{0.4}Sr_2Ca_2Cu_3O_{\partial}$	18
3.5.2	Stoichiometric ratio and exact mass for $Bi_{1.6}Y_0Pb_{0.4}Sr_2Ca_2Cu_3O_{\partial}$	18
3.5.3	Stoichiometric ratio and exact mass for $Bi_{1.58}Y_{0.02}Pb_{0.4}Sr_2Ca_2Cu_3O_{\partial}$	19
3.5.4	Stoichiometric ratio and exact mass for $Bi_{1.55}Y_{0.05}Pb_{0.4}Sr_2Ca_2Cu_3O_{\partial}$	19
3.5.5	Stoichiometric ratio and exact mass for $Bi_{1.5}Y_{0.1}Pb_{0.4}Sr_2Ca_2Cu_3O_{\partial}$	20
3.5.6	Stoichiometric ratio and exact mass for $Bi_{1,4}Y_{0,2}Pb_{0,4}Sr_2Ca_2Cu_3O_{\partial}$	20
4.1	Lattice parameter and relative volume fraction of all samples	26
4.2.1	Critical temperature for all samples	29
4.2.2	Critical current density for all samples	32