UNIVERSITI TEKNOLOGI MARA

REMOVAL OF CADMIUM AND CHROMIUM HEXAVALENT IN INDUSTRIAL EFFLUENT BY BACILLUS SPP. AND STAPHYLOCOCCUS SPP.

NURULAIN BINTI MAHADI

Project submitted in fulfillment of the requirements for degree of

BACHELOR IN ENVIRONMENTAL HEALTH AND SAFETY (HONS.)
FACULTY OF HEALTH SCIENCES

JULY 2015
Declaration by Student

Project entitled ‘Removal of Cadmium and Chromium Hexavalent in Industrial Effluent by Bacillus spp. and Staphylococcus spp.’ is a presentation of my original research work. Wherever contributions of others are involved, every effort is made to indicate this clearly, with due to reference to the literature, and acknowledgement of collaborative research and discussions. The project was done under the guidance of Madam Shantakumari Rajan as project supervisor. It has been submitted to the Faculty of Health Sciences in partial fulfilment of the requirement for the Bachelor in Environmental Health and Safety (Hons.).

Student’s Signature

..
(Nurulain binti Mahadi)
2011680538
900313-10-5318
Table of Contents

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xi</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>xiii</td>
</tr>
</tbody>
</table>

CHAPTER ONE: INTRODUCTION
1.1. Background Information | 1
1.2. Problem Statement | 3
1.3. Study Justification | 5
1.4. Objective | 6
1.5. Research Hypothesis | 6
1.6. Conceptual Framework | 7
1.7. Conceptual and Operational Definitions | 8
 1.7.1. Conceptual Definition | 8
 1.7.2. Operational Definition | 9

CHAPTER TWO: LITERATURE REVIEW
2.1. Industrial Effluent | 11
2.2. Physical Characteristic of Effluent | 12
 2.2.1. Temperature | 12
 2.2.2. pH | 12
 2.2.3. Biochemical Oxygen Demand (BOD) | 13
 2.2.4. Chemical Oxygen Demand (COD) | 14
2.3. Heavy Metals in Effluent | 14
 2.3.1. Cadmium | 16
 2.3.2. Chromium | 17
2.4. Effluent Treatment | 18
 2.4.1. Physical Treatment | 19
 2.4.2. Chemical Treatment | 19
 2.4.3. Biological Treatment | 21
2.5. Bacteriological Treatment | 22
2.5.1. *Bacillus* spp.
2.5.2. *Staphylococcus* spp.
2.5.3. Colony Forming Unit
2.6. Bioremediation of Heavy Metal

CHAPTER THREE: METHODOLOGY
3.1. Study Design
3.2. Study Variables
3.3. Criteria
3.4. Sample Collection
3.5. Instrumentation
3.6. Effluent Analysis (Pre-Treatment)
3.7. Effluent Treatment
3.8. Post-Treatment
3.9. Data Analysis
3.10. Quality Control
3.11. Study Limitation

CHAPTER FOUR: RESULTS
4.1. Effluent Physical Analysis
4.2. Bacterial Growth
4.3. Pre-Treatment of Heavy Metals Concentration Analysis
4.4. Post-Treatment Heavy Metals Analysis
4.4.1. Bacterial Treatment of Cadmium and Chromium Hexavalent by different concentration of *Bacillus* spp.
4.4.2. Bacterial Treatment by different concentration of *Staphylococcus* spp.
4.5. Efficacy Of Bacterial Treatment On The Reduction Of Heavy Metals Concentration

CHAPTER FIVE: DISCUSSION
5.1. Effluent Physical Analysis
5.1.1. Temperature
5.1.2. pH
5.1.3. Turbidity
5.1.4. Dissolved Oxygen
5.1.5. Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand (COD)
5.2. Bacterial Growth
5.3. Pre-Treatment Heavy Metals Concentration
ABSTRACT

Environmental pollution nowadays becomes a concerned issue by the people as they are more appreciating a good quality of environment to maintain their health and performance. One of the sources of environmental pollutant is from the untreated industrial effluent that discharged into open water bodies. Heavy metals in the effluents such Cadmium (Cd), Chromium (Cr), Copper (Cu), Lead (Pb), Iron (Fe), and others can harm the environment, animals, plants, aquatic life, and even human beings. Industrial effluent that contained high heavy metals concentration must undergo treatment before permitted to be discharged to the environment. The cost-effective, environmental friendly and reliable method to reduce heavy metals contained in the industrial effluent is by biological treatment specifically by using bacteria. This study was done to identify the efficacy of bacterial activation of different bacteria species in different bacterial concentration to reduce the concentration of Cadmium (Cd) and Chromium Hexavalent (Cr (VI)) in industrial effluent. The samples were taken monthly in three months period from a steel pipe manufacturer which assumed to have industrial effluent contained with heavy metals. The samples were analysed on the physic-chemical characteristics including temperature (°C), pH, Biochemical Oxygen Demand (BOD), and Chemical Oxygen Demand (COD). The samples were treated with two different bacteria; *Bacillus spp.* and *Staphylococcus spp.* with different bacterial concentration (10^-1 to 10^-5) to study the most efficient condition for heavy metals treatment. The results shows that there is no significant of treating Cd by both bacteria however, the most efficient treatment for Cr (VI) was by 10^-1 *Bacillus spp.* which achieving reduction to 0.239 mg/L (73.2%) of reduction from the mean concentration of initial Cr (VI) concentration of 0.814 mg/L. Cr (VI) is easier to be treated as the characteristic smaller ionic radius cause them to metabolite more in the bacterial cells. Every industry must comply with the gazetted regulations on the effluent discharges to help in sustaining the quality of our environment. Biological treatment is another reliable alternative in treating industrial effluents which guarantee the simple procedures are worth with the efficacy of the treatment.

Keywords: Industrial Effluent, Cadmium, Chromium Hexavalent, *Bacillus spp.*, *Staphylococcus spp.*, Biological Treatment