UNIVERSITI TEKNOLOGI MARA

ASSESSING IMPACT OF DEM RESOLUTION ON FLOOD INUNDATION MAPPING

AHMAD IKHWAN BIN ABDUL HALIM

Thesis submitted in fulfillment of the requirements for the degree of **Bachelor Science of Geomatics**

Faculty of Architecture, Planning and Surveying

July 2018

AUTHOR'S DECLARATION

I declare that the work in this thesis/dissertation was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	•	Ahmad Ikhwan Bin Abdul Halim
Student I.D. No.	:	2015823372
		Bachelor of Surveying Science and
Programme	:	Geomatics (Honours) – AP220
Faculty	:	Architecture, Planning & Surveying
Thesis/Dissertation Title	:	Assessing Impact of DEM resolution on flood
Thesis Dissertation The		inundation mapping
		(\mathbf{X})
Signature of Student	:	
Date	:	July 2018

ABSTRACT

DEMs can be derived from several sources either through remote sensing technique (space-borne or air-borne survey) or from traditional methods (ground survey). DEMs are characterized by different precision and accuracy based DEM resolution. The use of different resolution of DEM are obviously effect the result of flood inundation models. Therefore, the aim of this paper is to carry out the impact of flood depth and water extent using original and resample DEM resolution of low-medium resolution (IFSAR DEM) and low resolution (SRTM DEM). From DEMs, four hydraulic data were extracted cross-section of a 3.5 km reach of the Padang Terap River in Kedah, Malaysia. The effect of different source of DEMs (and different resolution) and different cross-section interval was investigate by considering the performance of the hydraulic models in simulation flood water depth as well inundation maps by using one dimensional (1-D) HEC-RAS model. TerraSAR-X image and flood marks had been used to validate the result of inundated area and flood depths. The outcomes of this study show that, the use of different DEMs has serious implications to the result of hydraulic models. The outcomes also indicated that IFSAR DEM show better prediction in inundated area with value of F-statistic are increase 1.0 from 70% to 71% but not in flood depth with the value of MAE are slightly increase went resampling been made and for SRTM show loss of model accuracy due to resampling with the Fstatistic of flood extend are decrease drastically with highest value different are 2.0 at cross-section 5 from 26.4 to 24.2 and the highest value different are 0.2 at cross-section 5 from 0.877 to 1.114 of MAE for flood depth. Moreover, the result for cross-section not give significant impact for flood extent but for flood depth it show that result are quite high different. Cross-section 50 m extract from IFSAR DEM show significantly presented good agreement between measure and predicted of water extend, water depth and water expansion with the value of F-statistic are 70.56%, value of MAE for water depth are 0.220 and value of RMSE for water expansion are 109.046 while the worse are at cross-section 100 with the value of F-statistic are 68.35%, value of MAE are for flood depth are 0.240 and value of RMSE are 158.355. While, for SRTM it show that cross-section are the best cross-section for flood modelling with the value of F-statistc are 26.40%, value of MAE for flood depth are 0.878 and value of RMSE for flood extension are 194.042 while the worse are cross-section 150 with the value of F-statistic are 23.59%, value of MAE for flood depth are 1.401 and value of RMSE for flood expansion are 216.049. By proposing the methodology, flood mapping can be provided accurately by considering the error exist in GIS spatial context.

TABLE OF CONTENT

		Page
CON	FIRMATION BY PANEL OF EXAMINERS	i
AUT	HOR'S DECLARATION	ii
SUPI	ERVISOR'S DECLARATION	iii
ABS	ГКАСТ	iv
ACK	NOWLEDGEMENT	v
TAB	LE OF CONTENT	vi
LIST	OF TABLES	ix
LIST	OF FIGURES	x
LIST	OF ABBREVIATIONS / NOMENCLATURE	xii
CHA	PTER ONE: INTRODUCTION	
1.1	Research Background	1
1.2	Problem Statement	3
1.3	Aim of Study	5
1.4	Objective of Study	5
1.5	Scope of Study	5
1.8	Significant of Research	5

1.9 Summary

.

CHAPTER TWO: LITERATURE REVIEW

2.1	Intro	oduction	7
2.2	Def	inition of Flood	7
	2.2.1	Coastal Flood	7
	2.2.2	Urban Flood	8
	2.2.3	Flash Flood	8
2.3	Floc	od Hazard	8
2.4	Flood Inundation 9		
2.5	Floc	od Modelling	10
2.6	HE	C-RAS Modelling	11

6

2.7	Input Data used in Flood Modelling		
	2.7.1	Digital Elevation Model	12
	2.7.2	Land-use	15
2.8	Flo	od Discharge	16
	2.8.1	Bjerklie's Equation	17
2.9	Inte	grated of Hyrdarulic Modelling and GIS in Flood Mapping	17
2.10	Hyd	Iraulic Modelling With Different Cross-Section Interval	18
2.11	Hydraulic Modelling with different Digital Elevation Model Resolution 20		
2.12	Flo	od Hazard Map in Malaysia	22
2.13	Sun	nmary	22

CHAPTER THREE: METHODOLOGY

3.1	Intro	oduction	23
3.2	Flow Chart		23
3.3	Prel	iminary Studies	25
	3.3.1	Study Area	25
	3.3.2	Software Used	26
3.4	Data	a Collection	28
3.5	Data	a Processing	33
	3.5.1	Vectorization	33
	3.5.2	Resampling	34
	3.5.3	Creating Maning's n Value Table	34
	3.5.4	RAS Geometry	35
3.6	Dat	a Modelling	37
	3.6.1	Hydraulic Modelling	37
	3.6.2	Geometric Data	38
	3.6.3	Steady Flow Data	39
	3.6.4	Steady Flow	40
3.7	Res	ult and Analysis	40
3.8	Sun	nmary	41

CHAPTER FOUR: RESULT AND ANALYSIS

4.1	Introduction	42
-----	--------------	----