OPTIMIZATION OF SOIL ACIDIFICATION IN LANDFILL USING WOOD ASH

FATIHAH BINTI ABDULLAH

Final Year Project Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2016

ABSTRACT

OPTIMIZATION OF SOIL ACIDIFICATION IN LANDFILL USING WOOD ASH

One of the characteristic of landfill soil is either in acidic condition or alkaline condition. The pH value for this soil is depends on several factors, for example soil type, or type of garbage that gathered together in one place, that could be produced the acidic and alkaline. Wood ash was used in this experiment, which is can be function as a medium to optimize the soil acidification. Two types of wood ash, which are Acacia mangium willd sp and Endospermum malaccensa sp was tested to see how far this wood ash can minimize the pH value of acidic landfill soil. In early step, distilled water and calcium chloride (CaCl₂) were used to determine the soil pH, and then following by using the wood ash. Two methods were applied in this experiment. First analysis is FTIR, which is to detect the components in wood ash. Second analysis is pH meter, which is to check soil pH. In this study, 0.1% to 0.5% weight of wood ash has been applied on each soil sample and based on the obtained result, 0.1% weight of wood ash that had been applied in this experiment, was chosen as the best weight to optimize the acidic soil, compare to others four percentage weight of wood ash due to its ability to neutralize the landfill soil, reaching 7, which mean neutral in pH graph.

ix

ABSTRACT

OPTIMIZATION OF SOIL ACIDIFICATION IN LANDFILL USING WOOD ASH

One of the characteristic of landfill soil is either in acidic condition or alkaline condition. The pH value for this soil is depends on several factors, for example soil type, or type of garbage that gathered together in one place, that could be produced the acidic and alkaline. Wood ash was used in this experiment, which is can be function as a medium to optimize the soil acidification. Two types of wood ash, which are Acacia mangium willd sp and Endospermum malaccensa sp was tested to see how far this wood ash can minimize the pH value of acidic landfill soil. In early step, distilled water and calcium chloride (CaCl₂) were used to determine the soil pH, and then following by using the wood ash. Two methods were applied in this experiment. First analysis is FTIR, which is to detect the components in wood ash. Second analysis is pH meter, which is to check soil pH. In this study, 0.1% to 0.5% weight of wood ash has been applied on each soil sample and based on the obtained result, 0.1% weight of wood ash that had been applied in this experiment, was chosen as the best weight to optimize the acidic soil, compare to others four percentage weight of wood ash due to its ability to neutralize the landfill soil, reaching 7, which mean neutral in pH graph.

TABLE OF CONTENTS

	Page
ACKNOWLEDGMENTS	iii
TABLES OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix

х

ABSTRAK	
---------	--

CHAPTER 1 INTRODUCTION

Background of study	1
Problem statement	3
Significant study	4
Scope of study	5
Objectives of study	6
	Significant study Scope of study

CHAPTER 2 LITERATURE REVIEW

2.1	Environmental problems in landfill	
2.2	Soil	8
	2.2.1 Soil type	8
	2.2.2 Soil properties	10
2.3	Wood ash	16
	2.3.1 Type of wood ash	17
	2.3.2 Determination of wood ash components	18
2.4	Application of wood ash in environment study	21
2.5	Liming technique	22

CHAPTER 3 METHODOLOGY

3.1	Materials		24
	3.1.1	Raw material	24
	3.1.2	Chemical	24
	3.1.3	Equipment and analytical instrument	24
3.2	Metho	ods	25
	3.2.1	Sampling area	25
	3.2.2	Sample collection	25
	3.2.3	Sample preparation for soil	26
	3.2.4	Sample preparation for wood ash	26
3.3	Deter	mination alkalinity of wood ash	26
3.4	Determination of component by using FTIR		27
3.5	Soil		27
3.6	Deter	mination of effect wood ash on soil pH	28

CHAPTER 4 RESULTS AND DISCUSSION

4.1	1 Wood ash	
	4.1.1 Measuring wood ash pH	29
4.2	FTIR	30
4.3	Soil pH	34
4.4	Effect of wood ash on soil pH	35
CHA	APTER 5 CONCLUSION AND RECOMMENDATION	45

CITED REFERENCE	46
CURRICULUM VITAE	51