ADSORPTION OF LEAD BY USING DURIAN LEAVES

RABIHAH BINTI AWANG ALI

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2016
ABSTRACT

ADSORPTION OF LEAD BY USING DURIAN LEAVES

Ability to remove Pb(II) from aqueous solution by Durian leaves (DL) was evaluated. DL was characterized by using pH\text{slurry} and pH\text{zpc} of biosorbent. The effect of physicochemical such as pH, adsorbent dosage, initial concentration of Pb(II) and contact time has been studied to obtain the optimum condition to remove Pb(II) ion from the aqueous solution. The studies were conducted at pH 4, DLP dosage 0.02 g, in contact time of 90 minutes. Kinetic data were analyzed by using two adsorption kinetic model which is pseudo-first-order and pseudo-second-order. The data shows high correlation coefficient based on pseudo-second-order model with R^2 is 0.9966 rather than pseudo-first-order model.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>TABLES OF CONTENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>viii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>x</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>xi</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION
1.1 Background of study
1.2 Problem statement
1.3 Significant study
1.4 Objective of study

CHAPTER 2 LITERATURE REVIEW
2.1 Lead in the environment
2.2 Wastewater treatment method
2.3 Adsorption
2.4 Biomaterial adsorbent
2.5 Durian residue as adsorbent

CHAPTER 3 METHODOLOGY
3.1 Materials
3.1.1 Raw material
3.1.2 Chemicals and reagents
3.1.3 Apparatus
3.1.4 Equipments and analytical instruments
3.2 Methods
3.2.1 Sampling preparation
3.2.2 Sample collection
3.2.3 Lead aqueous solution preparation
3.3 Adsorbent characterization
3.3.1 pH aqueous slurry ($\text{pH}_{\text{slurry}}$)
3.3.2 pH zero point charge (pH_{ZPC})
3.4 Batch adsorption study
3.4.1 Effect of pH
3.4.2 Effect of adsorbent dosage
3.4.3 Effect of initial concentration and contact time
3.4.4 Kinetic study
3.4.5 Expression of results
CHAPTER 4 RESULTS AND DISCUSSION
4.1 Introduction 27
4.2 Characterization of adsorbent 27
 4.2.1 pH\(_{\text{slurry}}\) 27
 4.2.2 pH\(_{\text{zpc}}\) 27
4.3 Batch adsorption studies 29
 4.3.1 Effect of pH 29
 4.3.2 Effect of adsorbent dosage 30
 4.3.3 Effect of initial concentration and contact time 31
4.4 Kinetic studies 33
 4.4.1 Pseudo-First-Order kinetic model 33
 4.4.2 Pseudo-Second-Order 35

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS
5.1 Conclusion 38
5.2 Recommendations 38

CITED REFERENCES 40
APPENDICES 45
CURRICULUM VITAE 54
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Caption</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Chemical and physical properties of lead</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Some methods to remove ions from wastewater</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Current technology for removing or reducing of heavy metal involving physical and/or chemical processes</td>
<td>15</td>
</tr>
<tr>
<td>4.1</td>
<td>Pseudo-first-order and pseudo-second-order parameter at various Pb(II) concentration</td>
<td>37</td>
</tr>
</tbody>
</table>