BIOSORPTION OF Pb(II) BY SULFURIC ACID TREATED SPENT GRATED COCONUT (Cocos nucifera) (SSGC) IN FIXED-BED COLUMN MODE

NORHASYIRA BINTI HASHIM

Final Year Project Report Submitted in Partial Fulfilment of the Requirement for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences University Teknologi MARA

JULY 2016
ABSTRACT

BIOSORPTION OF Pb(II) ON CHEMICALLY MODIFIED SPENT GRATED (SGC) COCOS NUCIFERA COCONUT: COLUMN STUDY

Spent grated coconut (cocos nucifera) from food industry waste was developed as a new and efficient biosorbent. In this study, the treated spent grated coconut was chosen to be investigated for removing Pb(II) from wastewater. The fixed-bed column study mode was employed under fixed parameters and column condition. The adsorption of adsorbent was investigated by using 1 g of biosorbent at pH 4, and the flow rate of 12 mL/min. The inlet concentrations of 80 mg/L of Pb(II) was used as initial concentration. The breakthrough curve was establish and two kinetic model were used; Thomas model and Yoon-Nelson model. Both model were fitted to this study with coefficient of correlation value (R^2) of 0.871. The column capacity, q_b determined from breakthrough curve plot was 67.97 mg/g which was of higher adsorption capacity recorded among plant wastes.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>vii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ix</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>x</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Background of study
1.2 Problem statement
1.3 Significance of study
1.4 Objectives of study

CHAPTER 2 LITRETURE REVIEW

2.1 Theory of biosorption
2.2 Agricultural waste as adsorbents
2.3 Spent grated coconut (SGC)
2.4 Chemical modification of plant waste
2.5 Batch experiment and column study
2.6 Mass transfer zone (MTZ)

CHAPTER 3 METHODOLOGY

3.1 Materials
3.1.1 Raw materials
3.1.2 Chemicals and reagents
3.1.3 Equipment and analytical instrument
3.2 Methods
3.2.1 Sample collection
3.2.2 Preparation of Pb(II)
3.2.3 Preparation of biosorbent
3.2.4 Pretreatment of SGC
3.2.5 Sulfuric acid treatment of SGC
3.3 Fixed-bed column study
3.4 Analytical techniques
3.5 Data analysis
3.6 Linear model
 3.6.1 Thomas Model
 3.1.2 Yoon-Nelson Model

CHAPTER 4 RESULT AND DISCUSSION
4.1 Breakthrough curve of Pb(II) adsorption by SSGC
4.2 Linear model
 4.2.1 Thomas Model
 4.2.2 Yoon-Nelson Model
4.3 Comparison using Thomas model and Yoon-Nelson model using different adsorbate

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

CITED REFERENCES
APPENDIXES
CURRICULUM VITAE
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Caption</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Types of low-costs adsorbents</td>
<td>3</td>
</tr>
<tr>
<td>4.1</td>
<td>Parameters of Fixed-bed column study</td>
<td>33</td>
</tr>
<tr>
<td>4.2</td>
<td>Parameters obtained from breakthrough curves</td>
<td>36</td>
</tr>
<tr>
<td>4.3</td>
<td>Thomas Model parameters</td>
<td>37</td>
</tr>
<tr>
<td>4.4</td>
<td>Yoon-Nelson parameters</td>
<td>39</td>
</tr>
<tr>
<td>4.5</td>
<td>Comparison using different adsorbate in Pb(II)</td>
<td>41</td>
</tr>
</tbody>
</table>