EXPERIMENTAL STUDY OF COMPOSITE COLD-FORMED STEEL
C-SECTION CONNECTED BACK-TO-BACK

RESEARCH MANAGEMENT INSTITUTE
UNIVERSITI TEKNOLOGI MARA
40450 SHAH ALAM, SELANGOR
MALAYSIA

PREPARED BY:
MOHAMAD ROHAIDZAT BIN MOHAMED RASHID
NOORSAIDI BIN MAHAT
NAZRI BIN NASIR

MEI 2009
CANDIDATE DECLARATION

We declare that this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. The work is our own and that appropriate credit has been given where reference has been made to the work of others. This topic has not been submitted to any other academic or non-academic institution for any degree or qualification.

Name of candidate: Mohamad Rohaidzat Bin Mohamed Rashid
IC No.: 810201-14-5535
Faculty: Civil Engineering

Name of candidate: Nazri Bin Nasir
IC No.: 820703-12-5533
Faculty: Civil Engineering

Name of candidate: Noorsaidi Bin Mahat
IC No.: 810718-14-5765
Faculty: Architecture, Planning and Surveying

Date: 11 MAY 2009
ABSTRACT

This thesis describes the results of an experimental investigation involving the testing of push out specimens. This study was aimed to develop a new type of shear connector that is easy to construct for a composite beam. The test specimens were designed to study the effect on the different shapes of shear connectors that have been applied for cold-formed steel lipped C-sections connected back-to-back. The test specimens have been categorized into two series which are four numbers of specimens for the first series and two numbers of specimens for the second series. For the first series variations of shear transfer mechanisms were tested, where prefabricated bent-up tabs of square shape and prefabricated bent-up tabs of triangular shape were employed at the surface of the flanges embedded in the concrete to provide shear transfer capacity. Second series of specimens were selected based on the results from the first series. The primary differences between the specimens are the shapes of the shear connectors and angles of bent-up. Failure mechanisms also were observed during testing. In this study, longitudinal cracks were observed from most of the specimens that were tested. Results show that the shear capacities of specimens with proposed type of shear connectors increase and the slips reduce compare to control specimen that only relies on natural bond (i.e. without shear connector) between steel and concrete to resist shear. Between the two types of shear connectors used, prefabricated bent-up tab (square shape) provides better performance in-term of strength, compare to the prefabricated bent-up tab (triangular shape). Concerning the angle of bent-up tab, higher degree of bent-up gives better performance.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>ii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>Notation</td>
<td>iv</td>
</tr>
<tr>
<td>Table of contents</td>
<td>vi</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 Background 1
1.2 Objective 5
1.3 Problem statement 5
1.4 Scope of work 7
1.5 Significant of study 8

2 LITERATURE REVIEW 9

2.1 Introduction 9
2.2 Design consideration of common steel-concrete composite beams 11
2.3 Composite Beam Component 13
 2.3.1 Steel beam 14
 2.3.2 Concrete slab 14
 2.3.3 Shear connectors 15
2.4 Research Studies on Steel-Concrete Composite Beam 19
2.5 Cold-formed steel section as a component for steel-concrete composite beams 24
 2.5.1 Advantages of Cold-Formed Steel Sections 25
2.6 Research Studies Cold-formed Composite Beam 29
2.7 Application of Cold-Formed Steel in Developed Countries 31
3 RESEARCH METHODOLOGY

3.1 Introduction
3.2 Preparation of specimens
 3.2.1 First Series of specimens
 3.2.2 Second Series of specimens
3.3 Fabrication of specimens
3.4 Test Setup and Instrumentation
3.5 Push-out Test Procedure
3.6 Material Properties
 3.6.1 Cold-formed Lipped C-section
 3.6.2 Concrete

4 EXPERIMENTAL RESULTS

4.1 Introduction
4.2 Test Results
4.3 First Series of tested specimens
4.4 Second Series of tested specimens

5 DISCUSSIONS, CONCLUSIONS AND RECOMMENDATION

5.1 DISCUSSIONS
5.2 CONCLUSIONS
5.3 RECOMMENDATION

6 REFERENCES

7 APPENDIX A