PHYTOCHEMICAL SCREENING AND INSECTICIDAL EFFECT OF Dendrobium crumenatum ON Lasius niger (BLACK ANT)

NUR HAFIZAH BINTI HAMZAH

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) Biology in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2017

ABSTRACT

PHYTOCHEMICAL SCREENING AND INSECTICIDAL EFFECT OF Dendrobium crumenatum ON Lasius niger (BLACK ANT)

The aim of this study is to identify the phytochemical screening and insecticidal effect of D. crumenatum on L. niger. The two different types of extract stems of D. crumenatum were screened for secondary metabolite constituents and insecticidal effect on L. niger (black ant). The stem sample were extracts with different solvent. hexane and methanol. The percentage yield of crude extracts calculated found that methanol showed the highest percentage followed with hexane with 10.18% and 4.40% respectively. Phytochemical screening of the extracts revealed the presence of alkaloids, saponins, tannin and terpenoids in the plants investigated. However, flavonoid absence in the hexane extract and methanol extract absence of flavonoid and tannin. The extracts stem of D. crumenatum of different concentrations were also investigated for their insecticidal effect on L. niger. The concentration was used at 1.875 mg/l, 3.75 mg/l, 75 mg/l, 150 mg/l and 300 mg/l. Average mortality indicated that the extracts caused significant mortality on the target insects. The bioassay has indicated that the toxic effect of the extracts was proportional to the concentration and higher concentration has stronger effect. From the study, hexane extract stem of D. crumenatum could cause the highest significant mortality compared to methanol extract. The thin layer chromatography (TLC) analysis is used as confirmation of secondary metabolite found in the extracts stem of D. crumenatum. The TLC analysis revealed that hexane extract has the most number of compound present with 15 compounds and methanol extract with 12 compounds respectively. Thus, stem of D. crumenatum plant extract could be used as biopesticide against L. niger.

TABLE OF CONTENTS

		а а л	TAGE
	KNOWLEDGEMENTS		iii
	BLE OF CONTENTS		iv
	T OF TABLES		vi
LIS	T OF FIGURES		vii
LIS	T OF ABBREVIATIONS		ix
ABS	STRACT		х
ABS	STRAK		xi
н			
CH	APTER 1: INTRODUCTION		
1.1		2	1
	Problem Statement		3
1.3			4
1.4	.		4
1.7	Objectives of the Study		T
СЦ	APTER 2: LITERATURE REVIEW		
2.1	Botanical Aspect	ĸ	5
2.1	2.1.1 Family Orchidaceae	15	5
	2.1.2 Genus Dendrobium		6
	2.1.3 General features of Dendrobium crumenatum		6
2.2	Lasius niger (Black Ant)		8
2.3			11
	2.3.1 Alkaloid		11
	2.3.2 Flavonoid		12
	2.3.3 Saponin		12
	2.3.4 Tannin		13
	2.3.5 Terpenoids		13
2.4	Insecticidal Studies and Environmental Friendly		14
CH	APTER 3: METHODOLOGY		
3.1	Materials		16
	3.1.1 Raw materials		16
	3.1.2 Chemicals		16
	3.1.3 Apparatus		16
3.2	Methods	3	17
	3.2.1 Sample collection		17
	3.2.2 Lasius niger sample collection		17
	3.2.3 Extraction of plant material		17
	3.2.4 Phytochemical screening test		- 18
	3.2.4.1 Alkaloid test		18
	3.2.4.2 Flavonoid test		18
	3.2.4.3 Saponin test		18

	3.2.4.4 Tannin test		18
	3.2.4.5 Terpenoid test		19
3.2.5	Thin layer chromatography		19
3.2.6	Identification of secondary	metabolites using spraying	19
	reagent on TLC plate		
	3.2.6.1 Alkaloids		19
	3.2.6.2 Terpenoids		20
3.2.7	Bioassay test		20
Data Analysis			21

CHAPTER 4: RESULTS AND DISCUSSION

3.3

4.1	Percentage Yield of Plant Extract Stem Sample	22
4.2	Phytochemical Screening Test	24
4.3	Thin Layer Chromatography (TLC) Analysis	30
4.4	Thin Layer Chromatography (TLC) Analysis Using Spraying	36
	Reagent	
4.5	Response of L. niger (Black Ant) Mortality Toward D. crumenatum Stems Extract	40
4.6	Response of L. niger Mortality Toward D. crumenatum Stems Extract at Different Extraction	42
4.7	Response of <i>L. niger</i> Mortality Toward <i>D. crumenatum</i> Stems Extracts at Different Concentration	44
CH/	APTER 5: CONCLUSIONS AND RECOMMENDATIONS	47

CITED REFERENCES	49
APPENDICES	56
CURRICULUM VITAE	60

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Habitat of D. crumenatum	6
2.2	Flower of D. crumenatum	7
4.1	Observations of test for alkaloids for (A) hexane extract and (B) methanol extract of <i>D. crumenatum</i> stem sample.	27
4.2	Observations of test for flavonoids for (A) hexane extract and (B) methanol extract of <i>D. crumenatum</i> stem sample.	27
4.3	Observations of test for saponins for (A) hexane extract and (B) methanol extract of <i>D. crumenatum</i> stem sample.	28
4.4	Observations of test for tannins for (A) hexane extract and (B) methanol extract of <i>D. crumenatum</i> stem sample.	28
4.5	Observations of test for terpenoids for (A) hexane extract and (B) methanol extract of <i>D. crumenatum</i> stem sample.	29
4.6	Sports of phytochemical constituents present in hexane extract of <i>D. crumenatum</i> with solvent system hexane: acetic acid (9:1) under (A) visible light, (B) UV_{254} and (C) UV_{366} respectively	35
4.7	Sports of phytochemical constituents present in methanol extract of <i>D. crumenatum</i> with solvent system chloroform: acetone (9:1) under (A) visible light, (B) UV_{254} and (C) UV_{366} respectively	35
4.8	TLC paper after been sprayed using Vanillin reagent. (A) Hexane extract, (B) Methanol extract. Blue, pink, grey and purple color indicate the present of terpenoid compounds	39
4.9	TLC paper after been sprayed using Dragendroff's reagent. (A) Hexane extract, (B) Methanol extract. Orange color indicate the present of alkaloids compounds	39
4.10	Five different concentration of hexane extracts	40
4.11	Five different concentration of methanol extracts	40