PHYTOCHEMICAL SCREENING AND INSECTICIDAL EFFECT
OF *Dendrobium crumenatum* ON *Lasius niger* (BLACK ANT)

NUR HAFIZAH BINTI HAMZAH

Final Year Project Report Submitted in
Partial Fulfillment of the Requirements for the
Degree of Bachelor of Science (Hons.) Biology
in the Faculty of Applied Sciences
Universiti Teknologi MARA

JANUARY 2017
ABSTRACT

PHYTOCHEMICAL SCREENING AND INSECTICIDAL EFFECT OF *Dendrobium crumenatum* ON *Lasius niger* (BLACK ANT)

The aim of this study is to identify the phytochemical screening and insecticidal effect of *D. crumenatum* on *L. niger*. The two different types of extract stems of *D. crumenatum* were screened for secondary metabolite constituents and insecticidal effect on *L. niger* (black ant). The stem sample were extracts with different solvent, hexane and methanol. The percentage yield of crude extracts calculated found that methanol showed the highest percentage followed with hexane with 10.18% and 4.40% respectively. Phytochemical screening of the extracts revealed the presence of alkaloids, saponins, tannin and terpenoids in the plants investigated. However, flavonoid absence in the hexane extract and methanol extract absence of flavonoid and tannin. The extracts stem of *D. crumenatum* of different concentrations were also investigated for their insecticidal effect on *L. niger*. The concentration was used at 1.875 mg/l, 3.75 mg/l, 75 mg/l, 150 mg/l and 300 mg/l. Average mortality indicated that the extracts caused significant mortality on the target insects. The bioassay has indicated that the toxic effect of the extracts was proportional to the concentration and higher concentration has stronger effect. From the study, hexane extract stem of *D. crumenatum* could cause the highest significant mortality compared to methanol extract. The thin layer chromatography (TLC) analysis is used as confirmation of secondary metabolite found in the extracts stem of *D. crumenatum*. The TLC analysis revealed that hexane extract has the most number of compound present with 15 compounds and methanol extract with 12 compounds respectively. Thus, stem of *D. crumenatum* plant extract could be used as bio-pesticide against *L. niger*.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ACKNOWLEDGEMENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>ix</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>x</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>xi</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

1.1 Background Study
1.2 Problem Statement
1.3 Significance of the Study
1.4 Objectives of the Study

CHAPTER 2: LITERATURE REVIEW

2.1 Botanical Aspect
 2.1.1 Family Orchidaceae
 2.1.2 Genus *Dendrobium*
 2.1.3 General features of *Dendrobium crumenatum*
2.2 *Lasius niger* (Black Ant)
2.3 Phytochemical Aspect
 2.3.1 Alkaloid
 2.3.2 Flavonoid
 2.3.3 Saponin
 2.3.4 Tannin
 2.3.5 Terpenoids
2.4 Insecticidal Studies and Environmental Friendly

CHAPTER 3: METHODOLOGY

3.1 Materials
 3.1.1 Raw materials
 3.1.2 Chemicals
 3.1.3 Apparatus
3.2 Methods
 3.2.1 Sample collection
 3.2.2 *Lasius niger* sample collection
 3.2.3 Extraction of plant material
 3.2.4 Phytochemical screening test
 3.2.4.1 Alkaloid test
 3.2.4.2 Flavonoid test
 3.2.4.3 Saponin test
3.2.4.4 Tannin test 18
3.2.4.5 Terpenoid test 19
3.2.5 Thin layer chromatography 19
3.2.6 Identification of secondary metabolites using spraying reagent on TLC plate 19
3.2.6.1 Alkaloids 19
3.2.6.2 Terpenoids 20
3.2.7 Bioassay test 20
3.3 Data Analysis 21

CHAPTER 4: RESULTS AND DISCUSSION
4.1 Percentage Yield of Plant Extract Stem Sample 22
4.2 Phytochemical Screening Test 24
4.3 Thin Layer Chromatography (TLC) Analysis 30
4.4 Thin Layer Chromatography (TLC) Analysis Using Spraying Reagent 36
4.5 Response of L. niger (Black Ant) Mortality Toward D. crumenatum Stems Extract 40
4.6 Response of L. niger Mortality Toward D. crumenatum Stems Extract at Different Extraction 42
4.7 Response of L. niger Mortality Toward D. crumenatum Stems Extracts at Different Concentration 44

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 47

CITED REFERENCES 49
APPENDICES 56
CURRICULUM VITAE 60
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Habitat of D. crumenatum</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Flower of D. crumenatum</td>
<td>7</td>
</tr>
<tr>
<td>4.1</td>
<td>Observations of test for alkaloids for (A) hexane extract and (B) methanol extract of D. crumenatum stem sample.</td>
<td>27</td>
</tr>
<tr>
<td>4.2</td>
<td>Observations of test for flavonoids for (A) hexane extract and (B) methanol extract of D. crumenatum stem sample.</td>
<td>27</td>
</tr>
<tr>
<td>4.3</td>
<td>Observations of test for saponins for (A) hexane extract and (B) methanol extract of D. crumenatum stem sample.</td>
<td>28</td>
</tr>
<tr>
<td>4.4</td>
<td>Observations of test for tannins for (A) hexane extract and (B) methanol extract of D. crumenatum stem sample.</td>
<td>28</td>
</tr>
<tr>
<td>4.5</td>
<td>Observations of test for terpenoids for (A) hexane extract and (B) methanol extract of D. crumenatum stem sample.</td>
<td>29</td>
</tr>
<tr>
<td>4.6</td>
<td>Sports of phytochemical constituents present in hexane extract of D. crumenatum with solvent system hexane: acetic acid (9:1) under (A) visible light, (B) UV${254}$ and (C) UV${366}$ respectively</td>
<td>35</td>
</tr>
<tr>
<td>4.7</td>
<td>Sports of phytochemical constituents present in methanol extract of D. crumenatum with solvent system chloroform: acetone (9:1) under (A) visible light, (B) UV${254}$ and (C) UV${366}$ respectively</td>
<td>35</td>
</tr>
<tr>
<td>4.8</td>
<td>TLC paper after been sprayed using Vanillin reagent. (A) Hexane extract, (B) Methanol extract. Blue, pink, grey and purple color indicate the present of terpenoid compounds</td>
<td>39</td>
</tr>
<tr>
<td>4.9</td>
<td>TLC paper after been sprayed using Dragendorff's reagent. (A) Hexane extract, (B) Methanol extract. Orange color indicate the present of alkaloids compounds</td>
<td>39</td>
</tr>
<tr>
<td>4.10</td>
<td>Five different concentration of hexane extracts</td>
<td>40</td>
</tr>
<tr>
<td>4.11</td>
<td>Five different concentration of methanol extracts</td>
<td>40</td>
</tr>
</tbody>
</table>