PHYTOCHEMICAL SCREENING AND ANTIMICROBIAL ACTIVITIES OF Diospyros blancoi LEAVES AGAINST SELECTED BACTERIA

AHMAD FAISAL BIN MOHAMAD ROSLAN

Final Year Project Written Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) Biology in The Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2017

ABSTRACT

Phytochemical Screening and Antimicrobial Activities of *Diospyros blancoi* Leaves Against Selected Bacteria

Diospyros blancoi which also known as 'Pokok mentega' is a species from family of Ebenaceae. The plant bark was known of its properties in treating diarrhea, dysentry, fever and cough. The fruit part has been used to treat wound and aphtous stomatitis. The D. blancoi extract can be used as an alternative drug to treat diseases. The methanol and hexane extract of D. blancoi leaves was investigated for the difference in amount of yield, phytochemical constituents, antimicrobial activities and minimum inhibitory concentration (MIC). For 200 g of dry weight, extraction in methanol yield more than in hexane which is 40.52 g and 5.85 g respectively. In methanol extract, alkaloids, flavonoids, and tannins were detected. Whereas in hexane extract, flavonoids, tannin and saponin were found. In disk diffusion of methanol extract, give highest antimicrobial activity at concentration 400 mg/ml against B. subtilis with 13.6 mm of inhibition zone and lowest antimicrobial activity was against P. aeruginosa which no inhibition zone was formed at all level of concentration. On the other hand, the disk diffusion of hexane extract did not give any inhibition zone at all concentration against all bacteria tested. In minimal inhibitory concentration (MIC) determination of methanol extract, the MIC of S. aureus, B. subtilis and K. pneumoniae was determined at 50 mg/ml, 25 mg/ml and 50 mg/ml respectively. The effectiveness of D. blancoi was affected by the level of concentration of extract and bacteria species. Besides, both extract cannot elicit inhibition zone against P. aeruginosa. This means that the extract cannot replace antibiotic such as gentamicin. Further investigation on another part of plant such as root and fruit flesh is recommended to use against P. aeruginosa for antibiotic susceptibility testing.

TABLE OF CONTENTS

		PAGE
ACK	KNOWLEDGEMENTS	iii
	BLE OF CONTENTS	iv
	Г OF TABLES	vi
LIST	r of figures	vii
LIST	F OF ABBREVIATIONS	ix
ABS	TRACT	х
ABS	TRAK	xi
CHA	APTER 1: INTRODUCTION	
1.1	Background of Study	1
1.2	Problem statement	2
1.3	Significance of the Study	2 3
1.4	Objectives of the Study	4
СЦ	APTER 2: LITERATURE REVIEW	
2.1	Diospyros blancoi	5
2.2	Gram Positive Bacteria	7
2.2	2.2.1 Bacillus subtilis	8
	2.2.2 Staphylococcus aureus	9
2.3	Gram Negative Bacteria	10
	2.3.1 Klebsiella pneumoniae	11
	2.3.2 Pseudomonas aeruginosa	11
2.4	Phytochemical Constituents Determination and Antimicrobial	12
	Susceptibility Testing	
СП	APTER 3: METHODOLOGY	
3.1	Materials	14
5.1	3.1.1 Raw materials	14
	3.1.2 Chemicals	14
	3.1.3 Apparatus	14
3.2	Methods	15

Metho	ds	15
3.2.1	Plant Collection	15
3.2.2	Drying	15
3.2.3	Crude Extraction	15
3.2.4	Phytochemical Screening	16
	3.2.4.1 Detection of Alkaloids (Mayer's test)	16
	3.2.4.2 Detection of Flavonoids (Sodium hydroxide test)	16
	3.2.4.3 Detection of Tannins (Ferric chloride test)	16

		3.2.4.4 Detection of Terpenoids (Salkowski test)	16
		3.2.4.5 Detection of Saponin (Foam test)	17
	3.2.5	Antimicrobial Susceptibility Test	17
		3.2.5.1 Growth Method	17
		3.2.5.2 Disk Diffusion	17
		3.2.5.3 Minimum Inhibitory Concentration (MIC)	18
3.3	Data Analysis		19
	3.3.1	Qualitatively	19
	3.3.2	Quantitatively	19
	3.3.3	ANOVA Statistical Test	19

CHAPTER 4: RESULTS AND DISCUSSION

4.1	Weight of Crude Extract	20
4.2	Phytochemical Screening	21
4.3	Inhibition Zone	24
	4.3.1 Methanol Extract	27
	4.3.2 Hexane Extract	41
4.4	Minimum Inhibitory Concentration (MIC)	46

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS 52

CITED REFERENCES	55
APPENDICES	60
CURRICULUM VITAE	74

LIST OF TABLES

TABLES	TITLE	PAGE
4.1	Extract yield for each solvent	20
4.2	Result of Phytochemical Screening	22
4.3	Methanol extract inhibition zone at different concentration	27
4.4	The effect of different bacteria at different concentration toward inhibition zone	34
4.5	Two-way ANOVA of bacteria species and concentration (disk diffusion)	40
4.6	Hexane extract inhibition zone at different concentration	41
4.7	MIC at different concentration	47
4.8	The effect of different bacteria on a concentration toward sample absorbance	50
4.9	Two-way ANOVA of bacteria species and concentration (MIC)	51