PARTICLEBOARD PROPERTIES FROM 3 YEARS OLD PETAI BELALANG

By

MUHAMAD MUAZ BIN ABDUL AZIZ

This Project Report Submitted in Partial Fulfilment of the Requirements for the Degree Bachelor of Science(Hons.) in Furniture Technology in the Faculty of Applied Sciences Universiti Teknologi MARA

January 2016
CANDIDATE'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulation of University Technology MARA. It is original and is the result of my work, unless otherwise indicated or acknowledgment as reference work. This thesis has not been submitted to any other academic institution or non-academic institution for any other degree or qualification.

In the event that my thesis is found to violate the conditions mentioned above, I voluntarily waive the right of conferment of my degree and agree to be subjected to the disciplinary rules and regulation of University Technology MARA.

Signature of Candidates: __________________________

Name: Muhamad Muaz Bin Abdul Aziz

Student ID: 2013772429

Program: Bachelor of Science (Hons) in Furniture Technology

Faculty: Faculty of Applied Sciences

Thesis Title: PARTICLEBOARD PROPERTIES FROM 3YEARS OLD PETAI BELALANG.
ABSTRACT

Particleboard Properties from 3 years old Petai belalang

(Leucaena leucocephala)

The growing demand for wood-based panels has led to continuous efforts to find new resources as alternative raw materials without depending on the decreasing supply of rubberwood. Petai belalang, or Leucaena leucocephala, was chosen in the manufacture of particleboard with urea-formaldehyde (UF) resin as a binder. The boards were produced at three density levels of 500, 600 and 700 kg m$^{-3}$ with 12% of resin content. This study evaluated the mechanical and physical properties of the petai belalang particleboard. The tests were conducted according to European standards. The mechanical properties tested were modulus of rupture (MOR), modulus of elasticity (MOE) in bending and internal bond (IB). Thickness swelling (TS) and water absorption (WA) were tested for physical properties. Results indicated that the strength properties of the boards improved with increased board density. Particle board with density of 700 kg m$^{-3}$ met part of the strength requirement, which suggests a possible application of this board in the production of furniture components.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>APPROVAL SHEET</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANDIDATE'S DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENT</td>
<td>iii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>vii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>viii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Background of Study

1.2 Problems of Statements

1.3 Objectives

2 LITERATURE REVIEW

2.1 Particleboard

2.1.1 Manufacturing

2.1.2 History and development

2.2 Raw Material

2.2.1 Rubberwood

2.2.2 Acacia Mangium sp

2.2.3 Petai Belalang

2.3 Properties

2.3.1 Factor Affecting Board properties

2.3.2 Factor Affecting Particle Size

2.3.3 Factor Affecting Board Density

2.4 Uses

2.5 Resin or Adhesive

2.5.1 Urea Formaldehyde
3 MATERIALS AND METHODS

3.1 Raw Material Preparation
 3.1.1 Petai belalang log
 3.1.2 Chipping
 3.1.3 Flaking
 3.1.4 Screening
 3.1.5 Drying
 3.1.6 Glue blending
 3.1.7 Mat Forming
 3.1.8 Cold Pressing
 3.1.9 Hot Pressing
 3.1.10 Trimming
 3.1.11 Testing

3.2 Flow Chart of Particleboard Manufacturing

3.3 Preparing the Sample

3.4 Method Testing
 3.4.1 Flexural Strength MOR/MOE
 3.4.2 Internal Bonding
 3.4.3 Thickness Swelling
 3.4.4 Water Absorption

3.5 Experimental Design

4 RESULTS AND DISCUSSION

4.1 Mechanical and Physical properties

4.2 Statistical significant

4.3 Effects of Particles
 4.3.1 Bending Strength
 4.3.2 Thickness Swelling and Water Absorption

4.4 Effects of density
 4.4.1 Bending Strength
 4.4.2 Thickness Swelling and Water Absorption

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

5.2 Recommendations

REFERENCES

APPENDICES

PUBLICATION OF THE PROJECT REPORT UNDERTAKING

PERMISSON FOR REFERENCES AND PHOTOCOPYING