UNIVERSITI TEKNOLOGI MARA

SUITABILITY OF UAV PHOTOGRAMMETRY AS A PLATFORM IN TOPOGRAPHIC MAPPING

SITI NURSHAHIRAH BINTI OTHMAN

Thesis submitted in fulfillment of the requirements for the degree of **Bachelor Science of Geomatics**

Faculty of Architecture, Planning and Surveying

July 2017

AUTHOR'S DECLARATION

I declare that the work in this thesis/dissertation was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of student	: Siti Nurshahirah Binti Othman
Student's ID No.	: 2014711205
Programme	: Bachelor in Surveying Science and Geomatics (Honours)
Faculty	: Faculty of Architrcture, Planning and Surveying
Code Programme	: AP220
Project Title	: Suitability of UAV Photogrammetry as a platform in Topographic Mapping
Signature and Date	: State 27/7/2017

ABSTRACT

There are several instrument and method used to collect the details of topography such as Total Station, Unmanned Aerial Vehicle (UAV) Photogrammetry, Real Time Kinematic Global Positioning System (RTK-GPS) and Terrestrial Laser Scanner. Among those instrument and method, most frequent used was Total Station because of its can give high accuracy output. However, since few years ago UAV Photogrammetry become an alternative way to collect the topographic data because it is lower in operating and manufacturer costs, reduce time and reduce man power. The aim of this study is to analyze the potential of UAV Photogrammetry as a platform to collect the topographic data. In this study, Aero M fixed wing UAV and Topcon ES Total Station was used to collect the topographic details of Academic Height, UiTM Arau, Perlis. Ground Control Points (GCPs) were established by using fast static method of GPS observation while, the Check Points (CPs) was established by using Tacheometry method (Total Station). An analysis carried out from this study is qualitative and quantitative assessment. The qualitative assessment was done by comparing the visualization of DEM and contour lines generated. Based on the result of qualitative assessment, the DEM and contour line generated from UAV was more beautiful and smooth. The quantitative assessment was verified by compared the number of features collected from the survey and digitized and calculating the planimetric and elevation Root Mean Square Error (RMSE) of coordinates from UAV Photogrammetry and Total Station. Based on the assessment, the result shown that the number of features collected from UAV was greater than Total Station, while the result of RMSEx is ±0.2244m, RMSEy is ±0.1996m and RMSEz is ±0.530m. In conclusion, this study shows that UAV Photogrammetry data can be used for detailed topographic survey.

TABLE OF CONTENTS

	CON	TENTS	PAGES
	CON	FIRMATION BY PANEL OF EXAMINERS	iii
	AUTHOR'S DECLARATION		iv
	ABSTRACT		vi
	ABSTRAK		vii
	ACKNOWLEDGEMENT		viii
	TABLE OF CONTENTS		ix
LIST OF TABLES		xii	
LIST OF FIGURES		xiii	
LIST OF ABBREVIATIONS / NOMENCLATURE		xvi	
LIST OF APPENDIX		xvii	
			y.
CHAPTER One		18	
INTRODUCTION		18	
	1.1	RESEARCH BACKGROUND	18
	1.2	RESEARCH GAP	19
	1.3	PROBLEM STATEMENT	23
	1.4	AIM & OBJECTIVES	24
	1.5	RESEARCH QUESTION	25
	1.6	SUMMARY OF METHODOLOGY	26
	1.7	SIGNIFICANT OF STUDY	28
	1.8	STRUCTURE OF THESIS	28
	1.9	SUMMARY	28

CHAI	CHAPTER Two		
LIT	LITERATURE REVIEW 30		
2	.1 INTRODUCTION	30	
2	2.2 HISTORY OF SURVEYING AND TECHNOLOGY DEVELOPMENT		
n	N MALAYSIA	30	
2	.3 METHOD USED FOR TOPOGRAPHIC SURVEY	32	
2	2.4 ADVANTAGES AND DISADVANTAGES OF TOTAL STATION AND		
U	INMANNED AERIAL VEHICLES (UAV).	35	
2	.5 ACCURACY ASSESSMENT	37	
2	.6 THE USES OF SMALL FORMAT DIGITAL CAMERA	FOR	
Т	OPOGRAPHIC MAPPING PURPOSE	40	
2	.7 THE DIGITAL ELEVATION MODEL (DEM) AND	ITS	
А	PPLICATION	41	
2	.8 THE GEODETIC SURFACE AND HEIGHTING MEASURED FI	ROM	
S	EVERAL LAYER OF GEODETIC SURFACE	43	
2	.9 TYPE OF UAV	45	
2	.10 SOFTWARE USED FOR UAV/DRONE IMAGE PROCESSING	48	
2.	.11 SUMMARY	50	
CII + 1		-	
CHAPTER Three		51	
	THODOLOGY	51	
	.1 INTRODUCTION	51	
	.2 METHODOLOGY	51	
	.4 DATA ACQUISITION	64	
	.5 DATA PROCESSING	66	
3.	.6 SUMMARY	74	
СНАН	PTER Four	75	
RES	RESULTS AND ANALYSIS		
4	.1 INTRODUCTION	75	
4	.2 ACCURACY ASSESSMENT FOR GROUND CONTROL POINT	75	
4.	.3 ACCURACY ASSESSMENT FOR TRAVERSE	78	
4.	.4 ACCURACY ASSESSMENT OF UAV DATA COMPARED TO	TAL	
S	TATION DATA	80	