MECHANICAL, PHYSICAL AND SCREW WITHDRAWAL PROPERTIES OF ENGINEERED WOOD STRUCTURE

NUR SHAFIQAH BINTI AHMAD ROSLI

.

This Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Bachelor of Science (Hons.) Furniture Technology in the Faculty of Applied Sciences, Universiti Teknologi MARA

JULY 2016

CANDIDATE'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulation of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledges as referenced work. This thesis has not been submitted to any academic institution or non- academic institution for any other degree or qualification

In the event that my thesis is found to violate the condition mentioned above, I voluntarily waive the right of conferment of my degree and agree to be subject to the disciplinary rules and regulations of Universiti Teknologi MARA.

: Nur Shafigah Ahmad Rosli

Signature of Candidates

Name of Candidate

Candidate's ID No.

Programme

Faculty

Thesis Title

Date

: Furniture Technology

: 2014442072

: Faculty Applied Sciences

: Mechanical, Physical and Screw Withdrawal Properties of Engineered Wood Structure

26 JULY 2016

ABSTRACT

MECHANICAL, PHYSICAL AND SCREW WITHDRAWAL PROPERTIES OF ENGINEERED WOOD STRUCTURE

Mechanical, Physical and Screw Withdrawal Properties of Engineered Wood Structure bounded with 12% urea formaldehyde added with hardener (Ammonium Chloride) has been studied. The board combination of laminated veneer lumber and particleboard were fabricated with three different sizes i.e <1mm, >1mm and mixture from below and upper than 1mm. The boards produced was evaluated for its modulus of rupture(MOR), modulus of elasticity (MOE), internal bonding (IB), water absorption (WA), thickness swelling (TS) and Screw Withdrawal properties which is screw withdrawal (SW) in according with Malaysia Standard. The diameter of screw used in the study is 7mm while the thread angle is 30°. The screw withdrawal testing was made on two position which are the surface (Laminated Veneer Lumber) and edge (Particleboard). The study revealed that the >1mm shows the best screw withdrawal strength. The best orientation on face in laminated veneer lumber substrate compare to orientation on edge in particleboard substrate, for mechanical properties mixed particle size shows the best strength of bending strength. <1mm particle size has high internal bonding strength and for physical properties <1mm particle size is the best result compared to <1mm and mixed particle size.

TABLE OF CONTENTS

	Page
APPROVAL SHEET	ij
DEDICATION	
CANDIDATE'S DECLARATION	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vii
LIST OF TABLES	vii
LIST OF FIGURES	ix
LIST OF PLATES	х
LIST OF ABBREVIATIONS	xi
ABSTRACT	xii
ABSTRAK	xiii

CHAPTER

1 INTRODUCTION

1.1	General Background	1
1.2	Problem Statement	3
1.3	Scope and Limitation	4

1.4 Objective of the Study 4

2 LITERATURE REVIEWS

2.1	Fastener	6
2.2	Urea Formaldehyde	8
2.3	Laminated Veneer Lumber	9
2.4	Particleboard	11
	2.4.1 Uses of Particleboards	12
2.5	Hybrid Composite Board	13
2.6	Wood Waste	14

3 MATERIALS AND METHODS

3.1	Exper	imental Design	16
3.2	Proce	ss Making Engineered Wood Structure	18
	3.2.1	Laminated Veneer Lumber	
		Process	19
	3.2.2	Particleboard Manufacturing	
		Process	20
	3.2.3	Engineered Wood Structure	
		Process	21

3.3	Testing Screw Withdrawal on Engineered	
	Wood Structure	22
	3.3.1 Preparation of Test Sample	24
	3.3.2. Face and edge Withdrawal of Screw	25
	3.3.3. Edge Withdrawal of Screw	26
	3.3.4 Measurement of Screw Withdrawal	27
3.4	Mechanical Testing on Engineered	
	Wood Structure	28
	3.4.1 Bending Testing (MOR and MOE)	28
	3.4.2 Internal Bonding Testing (IB)	28
3.5	Physical Testing on Engineered Wood	
	Structure	29
	3.5.1 Thickness Swelling and Water	
	Absorption	29
3.6	Dimension of Sampling Cutting Of	
	Test Piece	30

4 RESULTS AND DICUSSIONS

4.1	Mechanical Properties	32
	4.1.1 Modulus of Rupture (MOR)	32
	4.1.2 Modulus of elasticity (MOE)	34
	4.1.3 Internal Bonding	35
4.2	Screw Withdrawal Properties	36
4.3	Physical Properties	38
	4.3.1 Thickness and Swelling	39
	4.3.2 Water Absorption	40
CONCLUSI	ONS AND RECOMMENDATIONS	42

43

REFERENCES

5

vii