UNIVERSITI TEKNOLOGI MARA

IMPLEMENTATION IN MONITORING OF AN UITM BUILDING BY USING GNSS & TOTAL STATION TO ENSURE THE SAFETY OF FUTURE GEOMATIC LABORATORY

FARAH ATIQAH BINTI KAMIL

Thesis submitted in fulfillment of the requirements for the degree of **Bachelor Science of Geomatics**

Faculty of Architecture, Planning and Surveying

July 2017

AUTHOR'S DECLARATION

I declare that the work in this thesis/dissertation was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student : Farah Atiqah binti Kamil

Student I.D. No. : 2014130537

Bachelor Of Science Geomatics and Surveying

Programme : (AP220)

Faculty : Architecture, Planning & Surveying

Implementation in Monitoring of an UiTM Building by

Using GNSS and Total Station to Ensure the Safety of

Thesis/Dissertation Title Future Geomatics Laboratory

Signature of Student :

Date : July 2017

ABSTRACT

Deformation monitoring is method to identify the safety of engineering structures. It is very important because of every year new engineering structure has been built. The purpose of this study is to investigate the status of the existing building. The area of study is take place in UiTM Perlis at Al-Farabi 3 Block B. Basically, monitoring can be done by conventional geodetic method which by using Total Station. Besides that, GNSS technology also be apply during this monitoring is perform. GNSS capable to offer three-dimensional results compare conventional. Both are need to establish control points to ensure the measurement is verify with reference points. Plus, establishing target points are also needed for conventional observation made by Total Station. After manage to observe both techniques, the results achieved and can be compare to identify the differences for both results. Therefore, result of redundant readings of observation from conventional and modern method are manage to conclude that whether the building is safe to be occupy.

TABLE OF CONTENTS

			Page	
COI	ii			
AUTHOR'S DECLARATION				
ABS	TRAC	CT .	iv	
ABS	TRAK		v	
ACI	vi			
TAF	vii			
LIS	T OF T	TABLES	x	
LIS	T OF F	FIGURES	xi	
LIS	xii			
LIS	xiii			
CHA	APTER	1		
1.1	IN	TRODUCTION	1	
1.2	RE	ESEARCH BACKGROUND	2	
1.3	.3 RESEARCH GAP			
1.4	PR	COBLEM STATEMENT	8	
1.5	5 AIM & OBJECTIVES			
1.6	SU	JMMARY OF METHODOLOGY	9	
1.7	SI	SIGNIFICANT OF STUDY		
1.8	S	TRUCTURE OF THESIS	11	
	1.8.1	Chapter 1	11	
	1.8.2	Chapter 2	11	
	1.8.3	Chapter 3	12	
	1.8.4	Chapter 4	12	
	1.8.5	Chapter 5	12	
1.9	SU	UMMARY		

C	HAP	TER TWO: LITERATURE REVIEW	13		
2.	1 II	INTRODUCTION			
2.	.2 D	EFORMATION SURVEY	13		
	2.2.1	Geodetic Survey	13		
2.	.3 P	RE-ANALYSIS STUDY TECHNIQUE USED	14		
2.	4 H	ORIZONTAL CONTROL	16		
	2.4.1	Horizontal Control by Traverse	16		
2.	5 V	ERTICAL CONTROL	16		
	2.5.1	VERTICAL CONTROL BY LEVELLING	16		
2.	6 G	NSS TECHNOLOGY	18		
2.	7 G	NSS CALIBRATION	18		
2.	8 S	UMMMARY	19		
C	CHAPTER THREE: METHODOLOGY 20				
3.	1 I	NTRODUCTION	20		
2.	2 N	IETHODOLOGY	21		
3.	3 D	ETAIL METHODOLOGY	22		
	3.3.1	Study Area At Al- Farabi 3 UiTM Perlis	23		
	3.3.2	Research Tools & Instruments	25		
3.	4 D	ATA AQUISTION	29		
3.	5 D	DATA PROCESSING			
3.	6 S	UMMARY	30		
C	CHAPTER FOUR: RESULTS AND ANALYSIS				
4.	1 II	NTRODUCTION	32		
4.	2 E	STABLISH THE GROUND CONTROL POINT BY USING TOTAL	6		
S	TATIO	ON AND LEVELLING INSTRUMENT	32		
	4.2.1	Result from Pre-Analysis Of Network	33		
	4.2.2	Result for Horizontal Control	35		
	4.2.3	Result for Vertical Control	37		
4.	3 O	BSERVATION OF CONTROL POINTS ON THE BUILDING	39		
	4.3.1	Result Observation of Control Points on the Building Using Total			
Station					
	4.3.2	Result Observation of Control Points on the Building Using GNSS	42		