UNIVERSITI TEKNOLOGI MARA

DEVELOPMENT OF UNDERGROUND UTILITY DATA MANAGEMENT UTILIZING AN OPEN-SOURCE GIS SOFTWARE

MUHAMMAD ZAHIN AFIQ BIN MOHD YUSOF

Thesis submitted in fulfillment of the requirements for the degree of Bachelor Science of Geomatics/Master of Science

Faculty of Architecture, Planning and Surveying

JAN 2018
AUTHOR’S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student : Muhammad Zahin Afiq bin Mohd Yusof
Student I.D. No. : 2014834322
Programme : Bachelor of Science (Surveying Science & Geomatic) AP220
Faculty : Architecture, Planning and Surveying
Thesis : Development of Underground Utility Data Management Utilizing an Open-Source GIS Software

Signature of Student : ...
Date : January 2018
ABSTRACT

The Malaysia government have mandate the trust to Department Survey and Mapping Malaysia (JUPEM) to gather and organise the data for underground utility mapping. Hence in 2006, JUPEM has established a division for underground utility mapping-PADU (formerly known as Utility Mapping Section of the Mapping division) to compile all the data regarding the utility data. A Standard Guideline for Underground Utility Mapping (PKPUP 1/2006) has been produced by JUPEM in order to specify the procedure for collection, organise, and way of sharing data. In this circular also mention the issues for data quality and stakeholders. Thus meet the requirement that have been set by PADU. However, there is no legalisation or proper law that demand all the utility provider agency to share the data to PADU because the cost of licensed GIS software is expensive. The aim for this research is to design GIS database template for underground utility data management using QGIS software. In order to give them an option of what software they can use, the research will differentiate between an open-source GIS software and licensed software based on a few aspect. In this research, the outcome is to grasp the potential of QGIS software to develop an underground utility database.
TABLE OF CONTENT

CONFIRMATION BY PANEL OF EXAMINER i
AUTHOR’S DECLARATION ii
ABSTRACT iii
ACKNOWLEDGEMENT iv
TABLE OF CONTENT v
LIST OF TABLE viii
LIST OF FIGURES ix
LIST OF ABBREVIATIONS xi

CHAPTER ONE: INTRODUCTION 1
1.1 Research Background 1
1.2 Research Gap 3
1.3 Problem Statement 6
1.4 Aim and Objectives 8
1.5 Research Question 8
1.6 General Methodology 9
1.7 Significance of Study 11
1.8 Thesis Outline 11

CHAPTER TWO: LITERATURE REVIEW 13
2.1 Introduction 13
2.2 The Use of GIS in Underground Utility 13
2.3 National Underground Utility Database (PADU) 14
2.4 Malaysian Standard 1759 (MS1759) 15
2.5 Colour Codes for Utility Markouts 15
2.6 GIS Softwares 16
2.6.1 ArcGIS 17
2.6.2 Quantum Geographic Information System (QGIS) 18
2.7 General Comparison of ArcGIS and QGIS 19

v
2.7.1 Types of Data 19
2.7.2 Operating System 20
2.8 Hardcopy Format 21

CHAPTER THREE: RESEARCH METHODOLOGY 23
3.1 Introduction 23
3.2 Planning and Preparation 23
3.2.1 Letter of Permission 23
3.2.2 Site Reconnaissance 24
3.2.3 Software for Data Processing 25
3.4 Data Collection 26
3.4 Data Processing 27
3.4.1 Projection and Transformation (ArcGIS) 28
3.4.2 Attribute Data (ArcGIS) 29
3.4.3 Creating an Underground Utility Map 30
3.4.3.1 ArcGIS 30
3.4.3.2 QGIS 31
3.5 Data Analysis 31

CHAPTER FOUR: RESULTS AND ANALYSIS 32
4.1 Introduction 32
4.2 Evaluation Scheme 32
4.3 Comparison Analysis 33
4.3.1 Coordinate Comparison 33
4.3.2 Data Editing 35
4.3.2.1 General Editing 35
4.3.2.2 Snapping Types and Tolerance 35
4.3.2.3 Map Navigation While Editing 36
4.3.3 Topology Rules 36
4.3.4 Underground Utility Mapping 37
4.3.3.1 Symbology 38
4.4 Summary 39