UNIVERSITI TEKNOLOGI MARA

VISUAL COMFORT WITH DIFFERENT CORRELATED COLOUR TEMPERATURE AMONG PRESBYOPIA

MUHAMAD ILLIAS BIN NOR AZMI

Project submitted in partial fulfilment of the requirements for the

Bachelor of Optometry (Hons)

Faculty of Health Science

JULY 2015
AUTHOR’S DECLARATION

I declare that the work in this dissertation was carried out in accordance with the regulations of University Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This topic has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

In the event that my dissertation be found to violate the conditions mentioned above, I voluntarily waive the right of conferment of my degree and agree be subjected to the disciplinary rules and regulations of Universiti Teknologi MARA.

Name of Candidate: Muhamad Illias Bin Nor Azmi
Candidate I.D.No.: 2011213296
Programme: Bachelor of Optometry (Hons)
Faculty: Health Sciences
Thesis Title: Visual Comfort With Different Correlated Colour Temperature Among Presbyopia

Signature of Candidate: ……………………………………………………………

Date: July 2015
ABSTRACT

Purpose: To assess and compare the visual comfort with three (3) different correlated colour temperature among presbyopia. **Materials and methods:** 14 subjects among elderly aged from 37 to 59 years old recruited randomly from the area of Kuala Selangor, Selangor. The subject was asked to read the largest notation size of words until the smallest notation size of UiTM near reading chart in three (3) different correlated colour temperatures (2,856K, 4,100K, and 5,600K). The questionnaire is given and the subject needs to respond their feedback regarding the visual comfort based on the rating scale. **Results:** The 2,856K lamp provided the least visual comfort at all. The finding shows that 2,856K lamp was rated least favourably in every aspects of the questionnaire. It was rated particularly low on psychological indicators such as how the participants liked the colour of the lamp, on physiological indicators of the light bothering their eyes, giving them headaches, making them sleepy or tired, and making them uncomfortable. However, most of the subject response on both types of 4,100K and 6,500K colour temperature were rated similarly for certain questions. Seven (7) out of (9) question shows no significance different between this colour temperature. The subject had scored with high rating scale, means that they are least favourable towards the question asked. **Conclusion:** The best visual comfort that can be obtained from the two colour temperature, which were within 4,100K and 6,500K.

Keywords: Visual comfort, Correlated Colour Temperature, Presbyopia
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTHOR’S DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>SUPERVISOR SIGNATURE</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LISTS OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xiv</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

1.1 Introduction 1
1.2 Problem statement 3
1.3 Objectives 3
 1.3.1 General Objectives 3
 1.3.2 Specific Objectives 3
1.4 Hypothesis 4

CHAPTER 2: LITERATURE REVIEW

2.1 Light 5
2.2 Environment Lighting System 5
2.3 Correlated Colour Temperature 6
2.4 Psychological and Physiological Effect Changes on Colour Temperature 7
2.5 Visual Comfort 7
2.6 Age Related Visual impairment in Elderly 9
2.7 Presbyopia 10
2.8 Effects of lighting on presbyopia 11

CHAPTER 3: METHODOLOGY
3.1 Research Methodology
 3.1.1 Research Design 12
 3.1.2 Sample Size Calculation 12
 3.1.3 Criteria 13
 3.1.3.1 Inclusion Criteria 13
 3.1.3.2 Exclusion Criteria 13
 3.2 Research Protocol 14
 3.2.1 Screening Procedure 15
 3.2.1.1 Distance Visual Acuity 16
 3.2.1.2 Near Visual Acuity 16
 3.2.1.3 Binocular Vision Test 17
 3.2.1.4 Stereopsis 18
 3.2.1.5 Colour Vision Test 18
 3.2.1.6 Visual Comfort Assessment 19
 3.3 Research Instruments 20
 3.3.1 GTI LITE Light Booth 21
 3.3.2 UiTM Near Reading Chart 23
 3.3.3 Visual Comfort Questionnaire 23
 3.4 Ethical Approval 28
 3.5 Data Analysis 28

CHAPTER 4: RESULT
4.1 Demographic Data 29
4.2 Frequencies of the subjects that scored the rating scale from 1.00 to 5.00 towards the nine (9) different questions on three (3) different correlated colour temperature (2,856K, 4,100K and 6,500K) 29