UNIVERSITI TEKNOLOGI MARA

THREE-PHASE AC-DC CURRENT INJECTION HYBRID RESONANT CONVERTER (CIHRC) WITH WIRELESS POWER TRANSFER FUNCTION

RAHIMI BIN BAHAROM

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

Faculty of Electrical Engineering

January 2018
AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulation of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student : Rahimi Bin Baharom
Student I.D. No. : 2013249428
Programme : Doctor of Philosophy (Electrical Engineering) – EE950
Faculty : Electrical Engineering
Thesis Title : Three-Phase AC-DC Current Injection Hybrid Resonant Converter (CIHRC) with Wireless Power Transfer Function

Signature of Student : ..
Date : January 2018
ABSTRACT

In this thesis, the three-phase AC-DC current injection hybrid (series-parallel) resonant converter (CIHRC) is proposed to achieve a high power factor by injecting high-frequency currents into the three-phase diode bridge rectifier, producing a high frequency modulation signal with only two soft-switched active devices. The hybrid configuration resonant converter has the desirable characteristics of both series and parallel configurations. As such, the resonant current dependency problem of the typical series configuration circuit topology can be overcome, allowing the control of the output voltage at no-load or small load conditions. With an appropriate design of hybrid resonant circuit and a suitable switching frequency selection, the devices is capable to operate under virtually lossless zero voltage switching (ZVS) conditions allowing reduction in the size of inductive and magnetic components with high frequency operation. The early stage of the research work involved the derivation of detailed description of the steady-state analysis and characteristics of the proposed CIHRC. The test-rig of 1 kW operating at 20 kHz is developed and tested to be in good agreement with the prediction and simulation results. Next, the small-signal model is developed to design the compensator for the output voltage regulation, in which the derivation of a small-signal model is done by considering the converter to consist of two stages; the line-frequency rectifier and high-frequency resonant circuit. The analysis of line-frequency of the three-phase PWM AC-DC converter is based on the standard method. The resulting circuit equations that are expressed in state-space form are then averaged to remove the ripple. The direct and quadrature (d-q) transformation method is adopted to eliminate the time variance in the equations. In order to model the high-frequency resonant stage, the fundamental frequency methods are adopted. To match the line frequency equations of the three-phase PWM AC-DC converter with the high-frequency resonant stage equations, the power balanced relationship for the DC link methods are employed. Then, by considering small perturbations in all variables, the resulting non-linear model is linearised. The small-signal model is used to design the closed loop controller for the proposed three-phase AC-DC CIHRC. Such closed loop controller of the converter is designed based on the classical techniques of linear network and control theory. In addition, the compensator for the output voltage regulation is designed based on the open-loop control-to-output frequency response, the location of poles and also the trade-off between reducing the output voltage ripple and maintaining the high quality input line current. Design of this controller is verified under small signal change in the load, which is implemented by increasing and decreasing the parameters of the load resistor. With the successful application of the small-signal model in the closed-loop control, the output voltage regulation of the CIHRC is achieved. The proposed converter is further modified to operate wirelessly to provide wireless power transfer feature as an example of one of the salient application of CIHRC. High power transfer efficiency of 92 % is obtained showing the feasibility of the converter implementation in the wireless power transfer application whilst maintaining high input power factor. An experimental test-rig is constructed to verify the operation of the proposed system.
TABLE OF CONTENTS

CONFIRMATION BY PANEL OF EXAMINERS ii
AUTHOR’S DECLARATION iii
ABSTRACT iv
ACKNOWLEDGEMENT v
TABLE OF CONTENTS vi
LIST OF FIGURES xi
LIST OF TABLES xviii
LIST OF SYMBOLS xix
LIST OF ABBREVIATIONS xxı

CHAPTER ONE: INTRODUCTION 1
1.1 Background 1
1.2 Problem Statement 5
1.3 Objectives of Research 6
1.4 Scope of Work / Limitation of Research 7
1.5 Structure of the Thesis 9

CHAPTER TWO: LITERATURE REVIEW 11
2.1 A Review on Three-Phase AC-DC Converter Topologies 11
 2.1.1 Introduction 11
 2.1.2 Multipulse AC-DC Converters 12
 2.1.3 PWM AC-DC Converters 15
 2.1.4 VIENNA AC-DC Converters 16
2.2 A Review on Resonant Power Converter 18
 2.2.1 Introduction 18
 2.2.1.1 Series Loaded Resonant Power Converter 19
 2.2.1.2 Parallel Loaded Resonant Power Converter 21
 2.2.1.3 Hybrid Loaded Resonant Power Converter 23
 2.2.2 The Need For Resonant Converter 25
2.2.3 Switching Condition of Loaded Resonant Power Converter 26
 2.2.3.1 Switching Frequency Below Resonant Frequency 27
 2.2.3.2 Switching Frequency Above Resonant Frequency 29
2.2.4 Current Injection Technique 30
2.3 A Review on Small-Signal Model and Control of Power Electronic Converters 34
 2.3.1 Introduction 34
 2.3.2 Small-Signal Modelling of Switch-Mode Power Converter 35
 2.3.2.1 Averaging Methods 35
 2.3.2.2 Sampled-Data Techniques 36
 2.3.2.3 Extended Describing Function Method 37
 2.3.2.4 Methods Based on the Fundamental Frequency Analysis 38
 2.3.3 Control Methods for Basic Converter Units 39
 2.3.4 Control Methods for Resonant Converters 40
2.4 A Review on Wireless Power Transfer 42
 2.4.1 Introduction 42
 2.4.2 Background of WPT 42
 2.4.3 WPT Concept 43
 2.4.4 Inductive WPT Systems 45
 2.4.5 Highly Resonant WPT Systems 45
 2.4.5.1 Resonant 45
 2.4.5.2 Coupled Resonator 47
 2.4.5.3 Advantages of Highly Resonant WPT System 50
 2.4.6 Power Electronics Converter and Control Electronics for WPT System 51
2.5 Conclusion 53

CHAPTER THREE: CIRCUIT TOPOLOGY, STEADY-STATE CHARACTERISTICS AND ANALYSIS OF THE PROPOSED THREE-PHASE AC-DC CIHRC
3.1 Introduction 54