

PROPELLER TEST STAND

SYED KHOMEINI SYED HASSAN (2001476154)

ABD MANAN ABD RAHMAN (2001476545)

BACHELOR ENGINEERING (HONS)(MECHANICAL) UNIVERSITI TEKNOLOGI MARA (UITM) MARCH 2004

"We declared that this thesis is the result of our own work except the ideas and summaries which we have clarified their sources. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any degree."

Signed:

Date:

Syed Khomeini Syed Hassan

UiTM No: 2001476154

Signed:

Date:

2-4-2004

Abd Manan Abd Rahman

UiTM No: 2001476545

ABSTRACT

One of importance parameters that determine the performance of an aircraft is the characteristic of the propulsion system. In designing an aircraft that uses propellers as the propulsive device, the availability of characteristics such as thrust coefficient, power coefficient and efficiency, which changes with advance ratio, are important to the designer so that accurate decision can be made.

Previous student have design the propeller test stand that can be used in the wind tunnel to get the propeller characteristics. We continue this project starting with calibrating the thrust and torque measurement plates and then testing in the wind-tunnel for three different types of propellers. However, when we began testing the propeller in the wind-tunnel using the propeller test stand, the data logger malfunctioned.

Our advisor suggested that we have to reduce our scope of the testing to static condition. To accomplish this objective a new test stand was successfully designed and fabricated using facilities available in the Faculty of Mechanical Engineering's Workshop. The test stand was designed for Super Stock Type-R electric motor. The maximum rotational speed of the electric motor is 7000 rpm.

From the results data and the graph plotted, it shows that the thrust force is increase when the rotational speed of propeller is increase and the diameter of the propeller become larger.

TABLE OF CONTENTS

C	ONTENTS	S	PAGE	
PAGE TITLE				
A	ii			
A	iii			
T	ABLE OF (CONTENTS	iv	
LIST OF TABLES				
LIST OF FIGURE				
L	IST OF AB	BREVIATIONS	ix	
CHAPTER I	INT	RODUCTION	1	
CHAPTER II	PRE	PRELIMINARY STUDY		
	2.1	Introduction Theory on Propeller testing	3	
	2.2	Static Thrust	5	
CHAPTER III	THE	THE ORIGINAL TEST STAND		
	3.1	Experiment Setup	7	
	3.2	Calibration	9	
		3.2.1 The Results on the Pure Thrust		
		calibration	10	

		3.2.2 The Results on the Pure Torque	
		calibration	11
	3.3	Some Recommendation on Design	
		Improvement for the Previous Test Stand	12
CHAPTER IV	CON	ICEPTUAL OF THE NEW DESIGN	
	4.1	Design Basic	14
		4.1.1 Motor	14
		4.1.2 Propeller	16
		4.1.3 Power Supply	16
		4.1.4 Expected Value of Thrust	17
	4.2	Design concept	18
	4.3	Design Improvement	19
CHAPTER V	DES	IGN DETAILS	
	5.1	Detail Drawing	21
		5.1.1 Preliminary design	22
		5.1.2 Improvement design	24
	5.2	Material	26
		5.2.1 Aluminum Plate	26
		5.2.2 Mild Steel Plate	26
		5.2.3 Mild Steel Cylinder	26
		5.2.4 Plywood	26
	5.3	Fabrication	27
CHAPTER VI	TES	TING PROCEDURE	29