UNIVERSITI TEKNOLOGI MARA

DEVELOPMENT OF DEFORMATION MODELLING SOFTWARE ON GEODETIC MONITORING NETWORK USING ITERATIVE SIMILARITY TRANSFORMATION (IWST)

MUHAMMAD TAUFIK BIN ISMAIL

Thesis submitted in fulfillment of the requirements for the degree of Bachelor of Surveying Science and Geomatics (Hons)

Faculty of Architecture, Planning and Surveying

July 2017

AUTHOR'S DECLARATION

I declare that the work in this thesis/dissertation was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student Student I.D. No. Programme Faculty	:	Muhammad Taufik Bin Ismail 2014926851 Bachelor of Surveying Science and Geomatics – AP220 Architecture, Planning & Surveying Development of Deformation Modelling Software on Geodetic Monitoring Network Using Iterative Similarity Transformation (IWST)
Thesis/Dissertation Title		Similarity Hansionmation (19651)
Signature of Student	:	
Date	:	July 2017

ABSTRACT

Deformation survey is an important activity in engineering surveys in order to determine the safety of the structure. Therefore, the deformation detection in the analysis of deformation is a crucial part that needs to be taken care of in deformation survey. Iterative Weighted Similarity Transformation (IWST) is the robust estimation method in deformation analysis. While the deformation modelling is a method to determine the pattern of deformation occurs on monitoring network. In this study, the process begins by using existing program network adjustment and deformation detection acquired from previous study and a new program based on deformation modelling is developed using MATLAB software throughout this study. The reliability of the program was evaluated using two sets of data which are the data from previous studies and observed data that collected during this study was conducted. The data consists of the geodetic monitoring network information, including coordinate, distance, angle and azimuth in two epochs for both data sets. Each set of data verified statistically through the program. The outcomes from this study are the results produced by the program used consist of adjustment result, deformation detection result and deformation modelling result tabulate in respect of each data sets. The results of deformation modelling consist of the model tested, the global test status which either passed or failed and deformation parameter. The determination of the best model will be based on passing the global test and the least parameter if there is more than one model passing the test. Based on previous data, the result of deformation modelling successfully determine the same model used in previous study as the best model. Meanwhile the observed data used in this study happened to occur two model passing the test and allowing the consideration of the second condition. The result of the program verified the reliability of developed program and ensure the program is succeeding in performing deformation analysis.

TABLE OF CONTENTS

CONFIR	RMATION BY PANEL OF EXAMINERS	ii
AUTHO	R'S DECLARATION	iii
ABSTRA	ACT	iv
ABSTRA	AK	v
ACKNO	WLEDGEMENT	vi
TABLE	OF CONTENTS	vii
LIST OF	TABLES	ix
LIST OF	FIGURES	Х
LIST OF	SYMBOLS	xi
LIST OF	APPENDIX	xiii
CHAPTI	ER ONE	14
INTRO	ODUCTION	14
1.1	RESEARCH BACKGROUND	14
1.2	RESEARCH GAP	16
1.3	PROBLEM STATEMENT	20
1.4	AIM & OBJECTIVE	21
1.5	SIGNIFICANCE OF STUDY	21
1.6	THESIS STRUCTURE	22
CHAPTI	ER TWO	23
LITEF	RATURE REVIEW	23
2.1	INTRODUCTION	23
2.2	CONCEPT OF DEFORMATION DETECTION	23
2.3	NETWORK ADJUSTMENT	24
2.4	DEFORMATION DETECTION USING IWST	27
2.5	DEFORMATION MODELLING	29
2.6	CONCLUSION	34

СНАРТИ	ER THREE	35
METH	IODOLOGY	35
3.1	INTRODUCTION	35
3.2	METHODOLOGY IMPLEMENTATION	35
3.3	PROJECT PLANNING	37
3.4	DATA ACQUISITION	40
3.5	DATA PROCESSING	41
3.6	SUMMARY	45
СНАРТИ	ER FOUR	46
RESU	LTS AND ANALYSIS	46
4.1	INTRODUCTION	46
4.2	PREVIOUS SIMULATION DATA	46
4.3	OBSERVED DATA	51
4.4	CONCLUSION	56
CHAPTI	ER FIVE	57
CONC	LUSION AND RECOMMENDATION	57
5.1	INTRODUCTION	57
5.2	CONCLUSION	57
5.3	RECOMMENDATION	59
REFERE	ENCES	60

REFERENCES	
------------	--

APPENDICES
