FAILURE ANALYSIS ON KRISS MOTORCYCLE HANDLE LOCKING MECHANISM

MACKENZIE ANAK SOCRET
(99096452)
MOHD ASHRIQ B. MISKAM
(99082598)
MOHD IKRAM B. MOHD RAWI
(99082660)

A thesis submitted in partial fulfillment of the requirements for the award of Diploma in Mechanical Engineering (Manufacturing).

Faculty of Mechanical Engineering
Universiti Teknologi MARA (UiTM)
MARCH 2002
"We declared that this thesis is the result of our own work except the ideas and summaries which we have clarified their sources. The thesis has not been accepted for any diploma and is not concurrently submitted in candidature of any diploma."

Signed:

Date: 1 APRIL 02

Mackenzie Anak Socrates
UiTM No: 99082559

Mohd Ikram b. Mohd Rawi
UiTM No: 99082660

Signed:

Date: 1 APRIL 02

Mohd Ashriq b. Miskam
UiTM No: 99082598
ABSTRACT

This thesis is about failure analysis of the Kriss motorcycle handle locking mechanism. In this analysis, we focus on the locking mechanism located at the front part of the motorcycle. Action that we are taken is, we put the light impact force to the lock (locking rod), which consists in ignition switch by using Tensile Testing Machine. We wish to analyze the types of failure that normally occur when the handle being push with a sudden force. The understanding of this analysis will enable us to come up with suggestions for a better design of the handle locking mechanism in motorcycle, in secure.
TABLE OF CONTENTS

CONTENTS

PAGE TITLE i
ACKNOWLEDGEMENT ii
ABSTRACT iii
TABLE OF CONTENTS iv-vi
LIST OF TABLES vii
LIST OF FIGURES viii
LIST OF ABBREVIATIONS ix

CHAPTER 1 INTRODUCTION

1.1 Problem Statement 1
1.2 Objective Of Analysis 2
1.3 Scope Of Analysis 2
CHAPTER 2 LITERATURE REVIEW

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Stress – Strain Diagram</td>
<td>3</td>
</tr>
<tr>
<td>2.2 Fracture</td>
<td>5</td>
</tr>
<tr>
<td>2.3 Metals and crystalline solids</td>
<td>5</td>
</tr>
<tr>
<td>2.4 The elastic limit of solids</td>
<td>8</td>
</tr>
<tr>
<td>2.5 Possibilities of failure</td>
<td>10</td>
</tr>
<tr>
<td>2.6 Work and energy under a single load</td>
<td>15</td>
</tr>
<tr>
<td>2.7 Modeling of the handle system</td>
<td>17</td>
</tr>
<tr>
<td>2.8 Modeling of locking mechanism</td>
<td>19</td>
</tr>
<tr>
<td>2.9 Calculation</td>
<td>21</td>
</tr>
</tbody>
</table>

CHAPTER 3 EXPERIMENTAL METHODOLOGY

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Axial Shear Force</td>
<td>22</td>
</tr>
<tr>
<td>3.2 Wiping Die</td>
<td>24</td>
</tr>
<tr>
<td>3.3 Actual Testing</td>
<td>25</td>
</tr>
</tbody>
</table>

CHAPTER 4 EXPERIMENTAL ANALYSIS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>27</td>
</tr>
<tr>
<td>4.2 Equipments</td>
<td>27</td>
</tr>
<tr>
<td>4.3 Procedures</td>
<td>31</td>
</tr>
<tr>
<td>4.4 Experimental result</td>
<td>31</td>
</tr>
</tbody>
</table>