DEPTH DETERMINATION OF UNDERGROUND PIPE IN DIFFERENT TYPE OF SOIL BY USING HIGH AND LOW FREQUENCY OF GROUND PENETRATING RADAR (GPR)

SUHAIDA BINTI SUAMKAH

Thesis submitted in fulfillment of the requirements for the degree of Bachelor of Surveying Science and Geomatic (Hons)

Faculty of Architecture, Planning and Surveying

January 2018
AUTHOR’S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Undergraduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student : Suhaida binti Suamkah
Student I.D. No. : 2014846632
Programme : Bachelor of Surveying Science and Geomatic (Hons)-AP220
Faculty : Architecture, Planning and Surveying
Thesis : Depth Determination of Underground Pipe in Different Type of Soil by Using High and Low Frequency of GPR

Signature of Student : ..
Date : January 2018
Pipe detection is most crucial aspect that had to be taken in order to carry any activities on the ground. It is an important role to choose the best, correct type of instrument used in detecting the location, position and depth of the underground pipe for further work based on the type of the soil where the pipe was buried. Other than that, in order to investigate the pipes, a destructive technique is often used (Jones, 1982). So, the surveyed area was being damaged and destroyed. By using the GPR observation method, any destruction on the site can be prevented. In order to avoid from destroying the surrounding area, a precise digging planning can be obtained by using GPR device (Sepp, E. M., & Colonel, L., 2000). This study is done by comparison method where the depth of the underground pipe obtained from GPR observation for both frequencies will be compared with the depth obtained from leveling method. The depth comparison is applied for each of the type of the soil.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIRMATION BY PANEL OF EXAMINERS</td>
<td>ii</td>
</tr>
<tr>
<td>AUTHOR’S DECLARATION</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xii</td>
</tr>
</tbody>
</table>

CHAPTER ONE INTRODUCTION 1
1.1 Research Background 1
1.2 Research Gap 2
1.3 Problem Statement 2
1.4 Research Aim 3
1.5 Research Objectives 3
1.6 Research Question 3
1.7 Methodology 4
1.8 Expected Outcome 7
1.9 Significance of Study 7
1.10 Structure of Thesis 7
1.11 Summary 8

CHAPTER TWO LITERATURE REVIEW 9
2.1 Introduction 9
2.2 Ground Penetrating Radar 9
2.3 Electromagnetic Wave of GPR 11
2.4 Reflection and Transmission of Wave 12
2.5 Dielectric Permittivity 12
2.6 Electric Conductivity 13
2.7 Magnetic Permeability 14
2.8 Frequency of GPR 14
2.9 Resolution of the GPR 15
2.10 Levelling 15
2.11 Temporary Bench Mark 16
2.12 Summary 17

CHAPTER THREE RESEARCH METHODOLOGY 18
3.1 Introduction 18
3.2 Methodology 18
3.3 Project Planning 20
 3.3.1 Study Area 20
 3.3.2 Research Tools and Instruments 21
3.4 Data Collection 21
 3.4.1 Depth of Underground Pipe using Levelling Method 22
 3.4.2 Depth of Underground Pipe using GPR Observation 22
3.5 Data Processing 23
 3.5.1 Calculation in Obtaining Depth using Levelling Method 23
 3.5.2 2D Analysis using ReflexW Software 23
3.6 Summary 24

CHAPTER FOUR RESULTS AND DISCUSSION 25
4.1 Introduction 25
4.2 Depth of The Underground Pipe using Leveling Method 25
4.3 Depth of The Underground Pipe using GPR Observation 25
4.4 Depth Comparison 26
4.5 Summary 28

CHAPTER FIVE CONCLUSION 29
5.1 Introduction 29
5.2 Limitation of Study 29
5.3 Recommendation 29