VALUATION OF ANIMAL MODEL FOR MOLECULAR STUDY OF POST-SURGICAL PAIN

BAN KAHTAN IBRAHIM

Thesis submitted in fulfilment of the requirements for the degree of Master of Dental Science

Faculty of Dentistry

April 2013
AUTHOR’S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulation of Universiti Technologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This topic has not been submitted to any other academic institution or non-academic institution of any other degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of student : Ban Kahtan Ibrahim

Student I.D. No. : 2009160807

Programme : Master of Dental Science

Faculty : Faculty of Dentistry

Thesis Title : Validation of Animal Model for Molecular Study of Post-Surgical Pain

Signature of Student :

Date : April 2013
ABSTRACT

Introduction: Molecular mechanism of postoperative pain is unknown. Opioids have been found to be effective in reducing post-operative pain but with possible complications. Gabapentin has proven to be effective in reducing both postoperative pain and reverse the antinociceptive opioids tolerance including reducing opiate withdrawal symptoms. In dentistry postoperative pain is a common complain that needs to be alleviated or well controlled. Furthermore, there is no established dental post-surgical animal pain model to study post-surgical dental pain. Therefore we will use gabapentin as a tool, in rat molar extraction model to identify the neuro-anatomical circuit of post-operative dental pain and compare this model with an established post-operative pain model.

Hypothesis: Identifying the novel neural circuitry on which gabapentin act to regulate post-operative dental pain may reveal the neuro-anatomical and neuro-modulatory circuit of post-surgical dental pain and also comparing this model at molecular level with established post-surgical pain may allow us to validate dental post-surgical pain model. Objectives: 1. To study the validity of rat molar extraction to use as an animal model for the post-operative dental pain. 2. To identify neuro-anatomical sites of post-surgical dental pain. 3. To identify neuro-modulatory site of post-surgical dental pain. Materials and Methods: We will use a rat (Sprague dawly rats-250g-300g) model of molar extraction to study post-surgical dental pain. Using c-Fos immunohistochemistry we will localize the gabapentin induced neuro-modulatory sites to block the postoperative activation of rat CNS by means of c-Fos expression. Results and Conclusion: 1. The results of the present study have demonstrated that the rat molar extraction shows same behaviour as the established post-surgical pain model at molecular level. Therefore molar extraction on rat can be used as an animal model to study post-operative dental pain. 2. Our results also have suggested that further study is essential to identify the underlying molecular circuit through which gabapentin neutralized the rat molar extraction induced activation of hypothalamus. In future, identifying the molecule(s) responsible to modify the activation of hypothalamus may allow us to reveal the molecular mechanism and neuro-modulatory circuit of post-operative dental pain system.

Keywords: c-Fos, gabapentin, rat, post-surgical dental pain, central nervous system
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTHOR'S DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xi</td>
</tr>
</tbody>
</table>

CHAPTER ONE: INTRODUCTION

1.1 Background of Study 1
1.2 Statement of Problem 3
1.3 Justification of Study 3
1.4 Research Hypothesis 4
1.5 General Objectives 4

CHAPTER TWO: LITERATURE REVIEW

2.1 Pain
 2.1.1 Definition 6
 2.1.2 Classification 6
 2.1.2.1 Major Types of Pain 8
 2.1.2.1.1 Nociceptive Pain 8
 2.1.2.1.2 Inflammatory Pain 9
 2.1.2.1.3 Neuropathic Pain 9
 2.1.2.2 Functional Pain 10
 2.1.2.3 Physiologic Pain 10
 2.1.2.4 Cancer Pain 11
 2.1.3 Peripheral Sensory Organs (Nociceptors) 12
 2.1.4 Transmission of Pain 16
 2.1.5 Gate Control theory of pain 21
2.2 Anatomy of the Nervous System 23
 2.2.1 The Brain Stem 24
 2.2.2 Medulla 24
2.2.3 Pons
2.2.4 Midbrain
2.2.5 The Diencephalon
 2.2.5.1 Thalamus
 2.2.5.2 Hypothalamus
 2.2.5.2.1 Paraventricular Nucleus
 2.2.5.2.1.1 Magnocellular Neurosecretory Neurons
 2.2.5.2.1.2 Parvocellular Neurosecretory Neurons
 2.2.5.2.2 Hypothalamic Nuclei
 2.2.5.3 Subthalamus
 2.2.5.4 Hypothalamic Nuclei
2.2.6 Cerebrum
2.2.7 Cerebellum
2.2.8 The Autonomic Nervous System
2.3 Anatomical (Cortical) Activation Following Incisions
2.4 Orofacial Pain
 2.4.1 The Trigeminal Sensory Nucleus
 2.4.2 Trigeminal nerve
 2.4.3 Spinal Trigeminal Nucleus
 2.4.5 Pathway of dental pain
2.5 Surgical Stress
2.6 Sensitization
 2.6.1 Peripheral Sensitization
 2.6.2 Central Sensitization
2.7 Mandibular Molar Teeth In Humans
2.8 Mandibular Molar Teeth In Rat
2.9 Post-Surgical Pain Treatment
2.10 Gabapentin
2.11 Models of Postoperative Pain
 2.11.1 In Humans
 2.11.2 In Rats
2.12 C-Fos

CHAPTER THREE: RESEARCH METHODS
3.1 Ethics Approval
3.2 Animals
3.3 Surgery