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ABSTRACT

Palm Oil Mill Effluent (POME) is the largest contributor of biomass from 
the palm oil milling industry. Conventional method of POME treatment 
using ponding system should be improved because of huge land resource 
requirement. In this study, microbubbles technology was applied to 
understand the recovery rate of residual oil from POME at different 
operating temperatures. Temperature for POME was set at 27 oC, 30 oC and 
50 oC to determine the microbubble size distributions and characteristics at 
different POME temperature. At each temperature, the size of microbubbles 
was measured based on six size range; <10 μm, (11-20) μm, (21-30) μm, 
(31-40) μm, (41-50) μm and >50 μm. The results showed that at different 
temperatures, the microbubbles size distribution varies and the smallest 
group of microbubbles (<10μm) was generated at 50oC. According to Stoke-
Einstein equation, at higher temperature, smaller size of microbubbles is 
generated because of the gas diffusion factor into liquid.

Keywords: palm oil mill effluent (POME), size distribution, temperature, 
Stokes-Einstein equation 
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Introduction

In Malaysia, more than 50 million tonnes of Palm Oil Mill Effluent (POME) 
were produced every year from the palm oil industry [1]. In average, for 
every one tonne of crude palm oil (CPO) produced, about 3.5 tonnes POME 
will be produced [2]. POME is a thick brownish liquid that contain 95-96% 
water, 0.6-0.7% oil and 4-5% total solids including 2-4% suspended solids 
discharged to the environment at temperature 80-90oC [3]. Although the 
percentage of oil and grease in POME is less than 1.0%, the accumulated oil 
is significant and worth for to be recovered by considering the total volume 
of POME produced in Malaysia [4]. The oil in POME is present in the form 
of free oil droplets and attached oil. Previous study also showed that the oil 
droplets in POME varies in sizes and the smallest size measured under light 
microscope was <10 μm and cause difficulty in the recovery process using 
sludge-pit conventional method [4]. Therefore, an advanced technology 
known as microbubbles was proposed in order to encounter the problem.

 Microbubbles are colloidal bubbles of approximately 10-50 μm in size 
[5], [6]. It can be generated by various means such as air-liquid diffusion 
method, and power ultrasound. Each method in generating microbubbles 
has its own advantages and flaws. In this study, in relation to the size of 
oil droplets present in POME, smaller sizes of microbubbles need to be 
generated. Therefore, the generation method used need to be able to generate 
stable and small microbubbles. Many experimental works and researches 
had been done in order to identify the microbubbles characteristics so that 
smaller microbubbles can be generated [7]. 

As an advantage of its small size, microbubbles technology is one of 
the technology that is being used in waste water treatment process, purifying 
lakes or rivers water, cleaning agent for seafood and corals ultrasound and  
drug delivery agent in medical field [7], [8]. In Malaysia, the application of 
microbubbles is limited since narrow research has been done on this topic. 
Thus, the use of microbubbles in residual oil recovery process can be one 
of the contributing factors towards the development of palm oil milling 
industry in Malaysia. From simple calculation considering the current price 
of CPO, the recovery of residual oil from POME can increase the profit of 
palm oil mills daily [4].
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This study was carried out in order to determine the microbubbles size 
distribution at different POME temperatures. The purpose of this study is 
to create as much small microbubbles as possible so that even the smallest 
oil droplets present in POME can be recovered. Maximum recovery of oil 
droplets from POME will increase the oil extraction rate (OER) in a palm 
oil mill at the same time increasing their profit with the economically and 
environmentally friendly new technology.

Methods

Preparation of Samples

POME sample was collected from the outlet of the sludge pit at Felda 
Sungai Tengi Palm Oil Mill, Selangor, Malaysia. The sample was stored at 
-20°C for further use. For this experiment, the sample was heated to 89oC 
to imitate the actual temperature of POME at the mill. 

Generation of Microbubbles

Figure 1 shows the experimental set-up of the microbubbles system. 
The tank was filled with water until 80% (226.2L) of its maximum volume 
(282.7 L). In each experiment, the general start-up procedure of microbubble 
generator was completed before the water temperatures were set at 27oC, 
35oC and 50oC. For each temperature, microbubbles (MBs) generated were 
allowed to stabilise before further analysis.
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Figure 1: Schematic Diagram of Microbubbles Generation System

Visualisation Microbubbles Image

The MBs were trapped using polyvinyl chloride (PVC) solvent cement 
that was applied on the surface of parafilm tape. The solvent was allowed 
to dry under room temperature (27oC) with the MBs being trapped before 
the imaging process. Then, the image of MBs was captured and the size 
of MBs was determined by using Dino-Lite Digital Microscope (AnMo 
Electronics Corporation, Taiwan). The size measured was divided into six 
size range; <10 μm, 11-20 μm, 21-30 μm, 31-40 μm, 41-50 μm and >50 μm. 

Determination of Microbubbles Size Distribution

The determination for the MBs sizes was done with the help of Dino 
Capture 2.0 software. Grid was applied on the image captured. The diameter 
of MBs was measured one by one using the same software. MBs sizes were 
determined according to the size range mentioned above. For each size 
range three replication were made and the average value was calculated. 
The number of microbubbles was converted to percentage as expressed in 
Equation 1:
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diffusivity rate of air into water will increase as temperature increased [9-10]. 
According to Van’t Hoff-type relationship, cooler temperature will increase 
the bubble production, however, at certain temperature, the production of 
microbubbles will increase as the temperature increases. The availability of 
air to diffuse into water molecule will increase as the temperature increases. 
Therefore, more microbubbles will be produced. Theory of Brownian 
Motion proposed by Einstein explains the diffusivity of air into water by 
Equation 3 [11-12]. 

							       (3)

Many experiments had been done in relation to the equation above. 
From all those experiments, a researcher concluded that increasing the 
temperature will increase the diffusion of air into liquid as it changed from 
viscosity independent to hopping motion [13]. 
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size of microbubbles always depends on the internal pressure of the bubbles 
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From the above equation, it is clear that as the pressure increases, the 
bubbles diameter decrease [14]. The behaviour of microbubbles in water 
can be explained by several other equations as referred to liquid-gas law 
such as Henry’s Law and Stokes Law [15]. As known, the relation between 
temperature and pressure is always directionally proportional. Therefore, 
as the temperature is increased, the internal pressure of the MBs will also 
increase and the diameter will automatically decrease. Hence, smaller size 
of MBs will be generated.

Smaller MBs are always favoured as it will show better performance. 
MBs during collapsing process as measured by Stoke’s Law have low rising 
speed as compared to the normal bubbles. This is due to the small bubbles 
diameter that can assist in encapsulating smaller particles such oil droplets 
in POME. Therefore, higher recovery of residual oil can be achieved. 

     

Figure 3: (a) MBs Image 250x at 27oC (b) MBs Image at 35oC (c) MBs Image at 50oC

    
 

 
Figure 3: (a) MBs image 250x at 27 oC (b) MBs image at 35 oC (c) MBs image at 50 oC 

 
Conclusion  
 
In conclusion, the air diffusivity into water will increase as the temperature increase. The diffusion of air 
increase as the thin layer around water molecule tends to get thinner as higher temperature applied. This will 
cause higher production of microbubbles. Smaller size of microbubbles will be produced with high 
temperature in relation to the microbubbles internal pressure itself. By applying the concept of Henry’s Law, 
Stokes Law and Young-Laplace equation, internal pressures affect the diameter of microbubbles inversely. 
Therefore, it can be concluded that as temperature increased more small microbubbles produced.  
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Conclusion 

In conclusion, the air diffusivity into water will increase as the temperature 
increases. The diffusion of air increases as the thin layer around water 
molecule tends to get thinner as higher temperature was applied. This will 
cause higher production of microbubbles. Smaller size of microbubbles 
will be produced with high temperature in relation to the microbubbles 
internal pressure itself. By applying the concept of Henry’s Law, Stokes 
Law and Young-Laplace equations, internal pressures affect the diameter of 
microbubbles inversely. Therefore, it can be concluded that as temperature 
increases more small microbubbles will be produced. 
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