UNIVERSITI TEKNOLOGI MARA

THE REMOVAL OF CARBON DIOXIDE BY USING MODIFIED CARBONIZED OIL PALM SHELL IN FIXED BED COLUMN

AMALINA BTE MD DALI

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Chemical Engineering

June 2013

AUTHOR'S DECLARATION

I declare that the work in this dissertation was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Amalina bte Md Dali
Student I.D. No	:	2011603342
Programme	:	Master of Science (Chemical Engineering) by Mixed Mode
Faculty	÷ *	Faculty of Chemical Engineering
Dissertation Title	:	The Removal of Carbon Dioxide by using Modified Carbonized Oil Palm Shell in Fixed Bed Column
Signature of Student	:	Alt.
Date	:	June 2013

ABSTRACT

Carbon dioxide (CO_2) is the most abundant greenhouse gases which caused severe impact to the environment. This phenomenon could be prevent by reducing the CO_2 at flue gas stream before it can be released to the atmosphere. Therefore, this research intends to investigate the carbonized oil palm shell (CPS) modification by multi-steps chemical treatment of several solvents without activation of carbon for CO₂ adsorption. The comparison between experimental rig of single-fixed bed column (SFB) and multi-fixed bed column (MFB) was evaluated for higher adsorption efficiency. CPS was produced by carbonization at temperature of 600 °C within 5 hours. CPS particle was fixed at 15 g for SFB and MFB. Inlet CO₂ gas was controlled at 0.3 liter per minute during adsorption process and the discharge CO₂ concentration was measured by gas analyzer within 50 minutes. Simpson's rule method was used to calculate graph area for adsorption analysis. It was found that CO₂ removal in three layers of MFB is higher compared to SFB. CPS was treated by soaking with acetone and benzene. Then, it was divided into three portions which two of them were soaked with cyclohexane and acetonitrile separately and the other one with hydrogen peroxide. Surface morphology and BET analysis was done by using FESEM and BET surface area analysis respectively. The adsorption analysis in MFB for CPS treated by acetone-benzene-acetonitrile shows the highest adsorption of CO₂ followed by hydrogen peroxide, acetone-benzene-cyclohexane, CPS without treatment and acetone-benzene. This demonstrates more polar impurities inside the adsorbent which has been clean up from the conventional pore by the combination of polar aprotic, non-polar and non-polar solvents treatment which lead to micropores network formation of hypothetical T-Shirt shape pore model that influence the CO₂ adsorption and desorption of gas.

TABLE OF CONTENTS

AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	v
LIST OF TABLES	viii
LIST OF FIGURES	x
LIST OF ABBREVIATIONS	xiii
LIST OF SYMBOLS	xiv

CHAPTER ONE: INTRODUCTION

1.1	Background	1
1.2	Problem Statement	5
1.3	Research Objectives	6
1.4	Research Hypothesis	6
1.5	Scope and Limitation of the Study	7
1.6	Flow Chart of Process Work	7
1.7	Significance of Study	8
1.8	Thesis Organization	8

CHAPTER TWO: LITERATURE REVIEW

2.1	Introdu	action	11
2.2	Carbon Dioxide Capture and Usage		12
2.3	Carbonaceous Materials		13
	2.3.1	Oil Palm Shell Characteristics	15
2.4	Adsorp	otion	17

2.5	Characteristics of Activated Carbon		
2.6	Potential of Activated Carbon as CO ₂ Adsorbent		
2.7	Production Capacity and Uses of Activated Carbon		
2.8	Activated Carbon Characterization and Adsorption Measurement		28
	2.8.1	Adsorption Column Measurement	32
2.9	Synthesis of Activated Carbon and Modification		34
	2.9.1	Carbonization	36
		2.9.1.1 Carbonization of Oil Palm Shell	36
	2.9.2	Physical Activation and Treatment	38
	2.9.3	Chemical Activation and Treatment	39
2.10	Concl	usion	43

CHAPTER THREE: RESEARCH METHODOLOGY

3.1	Materi	ials	44	
3.2	Equip	Equipment and Experimental Setup		
3.3	Experimental Procedures		47	
	3.3.1	Adsorbent Production	47	
	3.3.2	Carbon Characterization	48	
	3.3.3	Adsorption Experimental and Analysis	49	

CHAPTER FOUR: RESULTS AND DISCUSSION

4.1	Palm Shell and Activated Carbon Characterization		56
	4.1.1	Elemental Analysis	56
	4.1.2	Morphological Analysis	57
	4.1.3	BET Multipoint Analysis	61
	4.1.4	Hypothetical T-Shirt Pore Model	62
4.2	Carbon Dioxide Adsorption Analysis		
	4.2.1	Single and Multiple Fixed Bed Column	65
	4.2.2	Adsorption on Treated Carbonized Palm Shell	69
		4.2.2.1 Sample Treated By Solvents Without Washed	70
		4.2.2.2 Sample Treated By Solvents With Washed	74