Among the various techniques for colour removal, adsorption is the most efficient and practically viable. However due to the relatively high production cost and difficulty in regeneration of activated carbon conventionally used as adsorbent for dye removal, there is a need to find alternatives. Consequently, layered double hydroxide (LDH) was proposed as an alternative adsorbent. 

MgAl-NO3-layered double hydroxide (LDH) (molar ratio Mg/Al: 4:1) was synthesised using coprecipitation method followed by hydrothermal treatment at 70 oC. Its calcined form (CLDH) was obtained at calcination temperature of 500 oC. The physicochemical characteristics of adsorbents, LDH and CLDH were determined prior to adsorption study involving anionic dyes (Acid Blue 29, Reactive Black 5, Reactive Orange 16 and Reactive Red 120) and a cationic dye Methylene Blue. Physical characterization using XRay diffraction, FTIR spectroscopy, scanning electron microscopy (SEM) confirmed the identity of LDH and CLDH pertaining to d003 position, its functional groups and morphological features. Adsorption of anionic dyes were influenced by pH, adsorbent dosage, contact time, initial dye concentration and temperature. High percentage removal for anionic dyes was achieved at pH < pHpzc (9.3-10) indicating strong electrostatic interaction between negatively charged dyes and positively-charged surface of adsorbent. Complete decolorization of anionic dyes was achievable for 25 mg/L concentration within 3 hrs at 0.2 g/L LDH dosage, but higher dye concentration needed longer equilibrium time within 24 hours. Analysis of kinetic data using pseudo-first order (PFO), pseudo-second order (PSO) and intra-particle diffusion kinetic models revealed that PSO mechanism was predominant and the overall rate of dye adsorption process appeared to be controlled by more than one step. The adsorption capacity predicted by PSO (qe,cal) was in good agreement with that obtained experimentally (qe, exp). Adsorption isotherms curves relating maximum adsorption capacity Qo, with equilibrium concentration, Ce have Giles’s L2-shape suggesting strong adsorbate-adsorbent interaction. Equilibrium data modelled after Langmuir and Freundlich demonstrated good coefficient correlations (R2 = 0.96-1.00), indicating the applicability of these isotherm models. Maximum monolayer adsorption capacity, Qo (mg/g) predicted by Langmuir for LDH in LDH-dye system were in the order: RBS (229.9) > AB29 (184.4) > RO16 (172.4) > RR120. The corresponding value for CLDH were RBS (344.8) > RR120 (303.0) > AB29 (243.9) > RO16 (243.9) > MB (16.9). Thermodynamic parameters obtained at 298K, 308K 318K and 328K implied that adsorption of anionic dyes by LDH was exothermic, spontaneous and physical in nature with decreased disorder as a result of adsorption. CLDH displayed enhanced efficiency of dye removal and hence is suitable for higher concentration whereas LDH is suited for lesser dye concentration. The adsorption mechanism of dyes adsorption by LDH was predominantly by surface adsorption while adsorption by CLDH was predominantly via rehydration followed by ion exchange. Experiment of recyclability showed that LDH via CLDH was able to be recycled while maintaining dye uptake up to 50% in the second cycle. Expectedly in binary solutions, dye uptake experienced reduced efficiency as a result of competition for active sites by individual dyes. As a conclusion LDH and its thermal form CLDH has displayed efficiencies comparable to other adsorbents. With a possibility of regeneration, LDH is a promising adsorbent for anionic dyes and applicable too with other types of negatively charged pollutants that are present in wastewater.