PROPERTIES OF HYBRID PARTICLEBOARD FROM ACACIA (*Acacia mangium*) AND OIL PALM TRUNK (*Elaeis guineensis*)

WAN JAMALLUDIN WAN OMAR

Thesis Submitted in Partial Fulfillment of the Requirement for the Degree of Bachelor of Science (Hons.) Bio-composite Technology

Faculty of Applied Science

JANUARY 2015
PROPERTIES OF HYBRID PARTICLEBOARD FROM ACACIA (*Acacia mangium*) AND OIL PALM TRUNK (*Elaeis guineensis*)

ABSTRACT

The purpose of this study is to evaluate the properties of the hybrid particleboard made from Acacia and Oil Palm Trunk and to evaluate the effects resin content and wood ratio on the particleboard properties. This study measured using Acacia (100%), then Acacia + Oil Palm Trunk (50%:50%) and Oil Palm Trunk (100%). This study used the middle part from both species and the target density was fixed at 650 kg/m². Twenty seven board were produces for test physical and mechanical properties every sample to achieve target density 850 kg/m². The resin content of board were 7%, 9% and 11% and Phenol Formaldehyde resin (PF) was the resin used. All properties tested were the based on the European Standard (EN). On the mechanical properties, from of the three wood ratio, 100% Acacia show the highest value for Modulus of Rupture (MOR) from 11% resin content with 15.2 MPa and the lowest value from wood ratio 100% OPT, 7% resin content with 3.7 MPa. Meanwhile, the best value for Modulus of Elasticity (MOE) is from wood ratio 100% Acacia with 11% resin content and value of MOE is 2427 MPa. Then, for Internal bond (IB) result show that the highest value from wood ratio 100% Acacia from 11% resin content with value 0.49 MPa and the lowest value wood ratio 100% OPT 7% and 9% resin content with value 0.05 MPa. On the physical properties, the best value of Thickness Swelling (TS) from wood ratio 100% OPT (11% resin content) with value 7.98% and the less value from wood ratio 100% Acacia (7% resin content) with value 13.89%. Then, the best value of Water Absorption (WA) from wood ratio 100% Acacia (9% resin content) with 62.24% and the less value from wood ratio 100% OPT (7% resin content) with 81.38%. All of the sample from mechanical properties achieved the standard compared sample from physical properties.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>APPROVAL SHEET</th>
<th>ACKNOWLEDGEMENTS</th>
<th>DEDICATION</th>
<th>TABLE OF CONTENTS</th>
<th>LIST OF TABLES</th>
<th>LIST OF FIGURES</th>
<th>LIST OF PLATES</th>
<th>LIST OF ABBREVIATION</th>
<th>ABSTRACT</th>
<th>ABSTRAK</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>ii</td>
<td>iii</td>
<td>iv</td>
<td>vi</td>
<td>vii</td>
<td>viii</td>
<td>ix</td>
<td>x</td>
<td>xi</td>
</tr>
</tbody>
</table>

CHAPTER

1.0 INTRODUCTION
1.1 Background of the study 1
1.2 Problem statement 3
1.3 Justification 4
1.4 Objectives 4

2.0 LITERATURE REVIEW
2.1 Particleboard industry 5
 2.1.1 History and development 6
 2.1.2 Manufacture of particleboard 7
 2.1.3 Properties of particleboard 8
 2.1.4 Uses of particleboard 8
 2.1.5 Hybrid particleboard 9
2.2 Raw materials in the particleboard industry 10
 2.2.1 Rubber wood 10
 2.2.2 Acacia *mangium* 11
 2.2.2.1 Distribution 13
 2.2.2.2 Wood characteristics 14
 2.2.2.3 Utilization 15
 2.2.3 Oil Palm Trunk 16
 2.2.3.1 Botanical classifications 17
 2.2.3.2 Uses of palm oil 17
2.3 Resin content 18
2.4 Wood ratio 18

3.0 MATERIAL AND METHOD
3.1 Raw Material Preparation 19
 3.1.1 Logging 19
3.1.2 Cutting
3.1.3 Chipping
3.1.4 Flaking
3.1.5 Screening
3.1.6 Drying
3.2 Board making
3.2.1 Glue mixing and blending
3.2.2 Mat forming
3.2.3 Cold press
3.2.4 Hot press
3.2.5 Trimming board
3.3 Board evaluation
3.3.1 Sample preparation
3.3.2 Board measurement and testing
3.3.3 Flexural strength (MOR and MOE)
3.3.4 Internal Bonding (IB)
3.3.5 Water Absorption (WA)
3.3.6 Thickness swelling (TS)
3.3.7 Experimental design
3.3.7 Statistical Analysis

4.0 RESULT AND DISCUSSION
4.1 Bulk density
4.2 Mechanical and physical properties
4.3 Statistical significance
4.4 Effect of resin content in hybrid particleboard
4.4.1 Mechanical properties
4.4.2 Physical properties
4.5 Effect of wood ratio on hybrid particleboard
4.5.1 Mechanical properties
4.5.2 Physical properties

5.0 CONCLUSION
REFERENCES
APPENDICES
VITAE
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Mechanical and physical properties of the particleboard from Acacia and Oil Palm Trunk</td>
<td>34</td>
</tr>
<tr>
<td>4.2</td>
<td>Statistical significance of the effects of the wood ratio and resin content on the hybrid particleboard</td>
<td>35</td>
</tr>
</tbody>
</table>