PROPERTIES OF MEDIUM DENSITY FIBERBOARD FROM RUBBERWOOD AND Leucaena IN RELATION TO WOOD RATIO AND RESIN CONTENT

NUR OTHMAN BIN SURATMAN

Thesis submitted in partial fulfillment of the requirement for the Degree of BACHELOR of SCEINCE (Hons) in BIO - COMPOSITE TECHNOLOGY in the FACULTY of APPLIED SCIENCES

UNIVERSITI TEKNOLOGI MARA

JANUARY 2015
CANDIDATE'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any other degree or qualification.

In the event that my thesis be found to violate the conditions mentioned above, I voluntarily waive the right of conferment of my degree and agree to be subjected to disciplinary rules and regulation of Universiti Teknologi MARA.

Name of Candidates : Nur Othman B Suratman
Candidate's ID No. : 2011571359
Programme : Bachelor of Science (Hons.) Bio-Composite Technology
Faculty : Applied Science
Thesis Title : Properties of Medium Density Fiberboard (MDF) from Rubberwood and *Leucaena* in Relation to Wood Ratio and Resin Content

Signature of Candidate : .................................................................
Date : 12/11/15
ABSTRACT

Properties of Medium Density Fiberboard (MDF) from Rubberwood and *Leucaena* in Relation to Wood Ratio and Resin Content

By

NUR OTHMAN B SURATMAN

JANUARY 2015

This study used *Leucaena* and rubberwood species as the raw materials in the manufacture of medium density fiberboard (MDF). The objective of this study were to determine the physical and mechanical properties of MDF using *Leucaena* and rubberwood and evaluate the effect of different wood ratios and resin content on board properties. In this study, urea formaldehyde (UF) was used as a binder and target board density was 700 kg/m³. Medium density fiberboard was assessed for the mechanical (bending and internal bonding) and physical (thickness swelling) properties according to European Standard (EN 622-5:2006). Mechanical properties revealed the highest MOR value is 15.09 MPa with resin content of 12% from wood ratios of 80% Rubberwood and 20% *Leucaena*. However, the highest result for MOE is 2005 MPa and IB is 0.7 Mpa is obtain from wood ratios of 20% Rubberwood and 80% *Leucaena* with 12% resin content. For the physical properties wood ratio with 80% Rubberwood and 20% *Leucaena* and 12% resin content had the best TS value with 21.59%. The results revealed that wood ratio shows significant effect on board mechanical properties of MOR, MOE and TS values. However, IB values were not significant.
# TABLES OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>i</td>
</tr>
<tr>
<td>CANDIDATE’S DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>TABLES OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>lx</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xi</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>xii</td>
</tr>
</tbody>
</table>

## CHAPTER 1: INTRODUCTION

1.1 Background of study | 1
1.2 Problem statement | 3
1.3 Significance of study | 4
1.4 Objective of study | 4

## CHAPTER 2: LITERATURE REVIEW

2.1 Malaysia wood composite industries | 5
2.2 Manufacture of wood based
   2.2.1 Medium density board | 8
   2.2.2 Properties and uses of Medium Density Fiberboard (MDF) | 8
2.3 Raw materials
   2.3.1. *Leucaena* | 9
   2.3.2. Rubberwood | 11
   2.3.3 Adhesive | 13
2.4 Factor that effect the board
   2.4.1 Difference wood ratio of species | 14
   2.4.2 Difference of resin content | 15
CHAPTER 3: METHODOLOGY

3.1 Medium Density Fiberboard Manufacturing
  3.1.1 Material preparation
  3.1.2 Manufacture of chips
  3.1.3 Manufacturing of fiber
  3.1.4 Drying
  3.1.5 Blending
  3.1.6 Formation of the mat
  3.1.7 Pressing the board
  3.1.8 Cutting and Trimming

3.2 Mechanical test
  3.2.1 Bending Strength
  3.2.2 Internal Bonding

3.3 Physical test
  3.2.1 Determination of Thickness Swelling
  3.2.2 Water Absorption

3.4 Experimental Design

CHAPTER 4: RESULTS AND DISCUSSIONS

4.1 Properties of Medium Density Fiberboard (MDF)
4.2 Statistical Significance
4.3 Effect of Ratio
  4.3.1 Mechanical Properties
  4.3.2 Physical Properties
4.4 Effect of Resin content
  4.4.1 Mechanical Properties
  4.4.2 Physical Properties