PROPERTIES OF *Acacia mangium* WOOD CEMENT BOARD IN RELATION TO PARTICLE SIZE AND ADDITIVES ($\text{Na}_2\text{Si}_3\text{O}_3$)

MOHAMAD ALIF AIZAT BIN MOHD AZHAR

Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Bio Composite Technology

Faculty of Applied Science
Universiti Teknologi MARA

JANUARY 2015
CANDIDATE'S DECLARATION

I declare that the work in this Final Year Project was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. The final year project report has not been submitted to any other academic institution or non-academic institution for any other degree or qualification.

In the event that my Final Year Project is found to violate the condition mentioned above, I voluntarily waive the right of conferment of my bachelor degree and agree to be subjected to the disciplinary rules and regulations of Universiti Teknologi MARA.

Name of Candidate: MOHAMAD ALIF AIZAT M. AZHAR

Candidate's ID No: 2011348247

Signature of Candidate: ..
ABSTRACT

PROPERTIES OF Acacia Mangium WCB IN RELATION TO PARTICLE SIZE AND ADDITIVES (Na$_2$S$_2$O$_3$)

Particle size and additives (Na$_2$S$_2$O$_3$) had significance effect on physical and mechanical properties of WCB. One way analysis of variance (ANOVA) has been used to examine if there is any significance differences between the populations mean. The findings were revolved around the mechanical and physical properties of Wood Cement Board (WCB) from Acacia mangium. The two parameters that involved in this study are the particle sizes and the additives (Na$_2$S$_2$O$_3$). Particle size, additives (Na$_2$S$_2$O$_3$) and the correlation between particle size and additives (Na$_2$S$_2$O$_3$) influence on all the WCB properties. The values of physical properties for particle size effect all met the standards of MS544:2001 except for particle size 2.0mm of 0% Na$_2$S$_2$O$_3$ and 1.5% Na$_2$S$_2$O$_3$ which are WA not met the standards of MS544:2001. Effect of particle size on mechanical properties indicate fluctuation due to the decreasing of particle sizes while the effect of particle size on physical properties also show fluctuation due to the decreasing of particle sizes. Meanwhile, the effect of additives which are 3% of Na$_2$S$_2$O$_3$ tends to cause higher values of MOR (13.6MPa), MOE (5,979MPa) and IB (1.56Mpa) on the effect of mechanical properties. The effect of additives (Na$_2$S$_2$O$_3$) on physical properties, the value of WA and TS tends to decrease corresponding due to the percentage (3%) of Na$_2$S$_2$O$_3$.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPROVAL SHEET</td>
<td>ii</td>
</tr>
<tr>
<td>CANDIDATE'S DECLARATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xiii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>xiv</td>
</tr>
</tbody>
</table>

CHAPTER 1

1.0 INTRODUCTION

1.1 Background of study 1
1.2 Research problems of study 5
1.3 Justification of study 5
1.4 Significance of study 6
1.5 Limitations of study 7
1.6 Objectives of study 9

CHAPTER 2

2.0 LITERATURE REVIEW

2.1 Overview of *Acacia mangium* 10
 2.1.1 Physical and mechanical properties of
 Acacia mangium 11

2.2 Wood based panel product 12
 2.2.1 History of wood cement board 13
 2.2.2 Manufacturing process in wood cement board 14
 2.2.3 Physical and mechanical properties of
 wood cement board 15

2.3 Effect of particle size on wcb properties 17
CHAPTER 3

3.0 MATERIALS AND METHODS

3.1 Raw materials
3.2 Materials preparation
3.3 Determination of moisture content (MC)
3.4 Particle analysis
3.5 Bulk density
3.6 Wood cement board making
 3.6.1 Board making process
 3.6.2 Blending
 3.6.3 Mat forming
 3.6.4 Pre pressing
 3.6.5 Cold press
 3.6.6 Conditioning chamber
 3.6.7 Curing time in room temperature
 3.6.8 Board cutting
3.7 Determination of flexural strength in wcb
3.8 Determination of internal bonding
3.9 Physical testing in wcb
 3.9.1 Water absorption
 3.9.2 Thickness swelling

CHAPTER 4

4.0 RESULTS AND DISCUSSION

4.1 Properties of wood cement board (wcb)
4.2 Effect of particle size and additives on mechanical properties
 4.2.1 Modulus of rupture
 4.2.2 Modulus of elasticity
 4.2.3 Internal bonding
4.3 Effect of particle size and additives on physical properties
 4.3.1 Water absorption
 4.3.2 Thickness swelling
4.4 Statistical testing
 4.4.1 Between additives