SPATIAL CORRELATION OF DENGUE CASES BASED ON CLIMATE CHANGE IN SELANGOR FOR YEAR 2013 TO 2015

RABIATUL ADAWIYAH BT AB HALIM
2014473558

Thesis submitted in fulfillment of the requirements for the degree of Bachelor of Surveying Science and Geomatics (Hons)

Faculty of Architecture, Planning and Surveying

January 2018
AUTHOR’S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student : Rabiatul Adawiyah Bt Ab Halim
Student I.D. No : 2014473558
Programme : Bachelor of Surveying Science and Geomatics (Hons)
Faculty : Architecture, Planning & Surveying
Thesis : Spatial Correlation of Dengue Cases Based on Climate Changes in Selangor for Year 2013 to 2015.

Signature of Student : ……………………………
Date : January 2018

Approved by:
I certify that I have examined the student’s work and found that they are in accordance with the rules and regulations of the Department and University and fulfils the requirements for the award of the Degree of Bachelor in Surveying Science and Geomatics (Honour).
Name of Supervisor : Dr. Noradila Rusli @ Ruslik

Signature : …………………………………
Date : ……………………………
ABSTRACT

Dengue fever is an infectious mosquito borne disease that places a heavy burden on global disease and also on public health systems in Malaysia as well as on most of the tropical countries around the world. Little is known the climate changing association of dengue disease. The aim of this study is to analyse the spatial correlation of dengue cases from year 2013 to 2015 based on climatic changing condition in Selangor using Geographic Information System (GIS). The correlation of dengue cases based on the calculation of temperature value in Selangor and it is then mapped based on monthly number of dengue cases for three years. Kernel Density estimation was used for hotspot analysis on dengue cases. Then, Landsat 8 OLI were used to extract the value of temperature to be correlated with dengue cases. Correlation in 2013 and 2014 are given with R² value is 10% decreasing from July to December. It shows that, temperature is less significantly contributing to dengue cases due to the inconsistently temperature during July to December. On the other hand, correlation between 2014 and 2015 from January to April are given with R² value is 15% increasing. Therefore, temperature is more significantly contributing to dengue cases during January to April. This is because, that most of cases were concentrated in the first half of the year, mainly in March and April, underlining the known seasonality of dengue fever. Then, the mean annual temperature for the period were 24°C and 29°C for monthly maximum temperature. The range of temperature around 24°C to 33°C is very conducive for mosquito breeding cycle as an increase number of times, that mosquito breeds will also increase the likelihood of emergence of dengue outbreak. In the conclusion, dengue cases positively correlated with climate changes in Selangor for year 2013 to 2015.
TABLE OF CONTENT

CONFIRMATION BY PANEL OF EXAMINERS .. 1
AUTHOR'S DECLARATION ... 3
ABSTRACT .. iii
ACKNOWLEDGEMENT .. 5
TABLE OF CONTENT ... v
LIST OF TABLES .. viii
LIST OF FIGURES .. ix
LIST OF SYMBOLS ... xi
LIST OF ABBREVIATIONS .. xii

CHAPTER ONE: INTRODUCTION

1.1 Research Background .. 1
1.2 Research Gap .. 2
1.3 Problem Statement ... 5
1.4 Aim and Objectives ... 6
1.5 Research Question ... 7
1.6 Proposed Methodology ... 7
1.7 Significant of Study ... 8
1.8 Thesis Outline ... 8
1.9 Summary .. 9

CHAPTER TWO: LITERATURE REVIEW

2.1 Introduction ... 10
2.2 History of Dengue .. 10
 2.2.1 Review of Dengue Cases in Malaysia 11
 2.2.2 Dengue Cases in Malaysia ... 11
2.3 GIS Application in Dengue Outbreak 13
2.4 Temperature As Related to Dengue 14
2.5 Application of Remote Sensing for Study on Disease 16
2.6 Statistical Analysis on Study Related to Dengue 17
 2.6.1 Kernel Density Estimation .. 18
CHAPTER THREE: RESEARCH METHODOLOGY

3.1 Introduction 20
3.2 Detail Methodology 20
3.3 Selection of Study Area 22
3.4 Project Planning 23
3.5 Data Acquisition 23
 3.5.1 Dengue Data 24
 3.5.2 Temperature Data 24
3.6 Software 25
 3.6.1 ArcGIS 25
3.7 Data Preparation 26
3.8 Data Processing 26
 3.8.1 Database of Dengue Outbreak 27
 3.8.2 Distribution Mapping of Dengue Outbreak 27
 3.8.2.1 Overlay Method for Dengue Data 29
 3.8.3 Hotspot Mapping of Dengue Outbreak 30
 3.8.3.1 Kernel Density Estimation Method 31
 3.8.4 Temperature Pattern 32
 3.8.4.1 Temperature Extraction Method 34
 3.8.5 Spatial Correlation of Dengue Outbreak 37
 3.8.5.1 Spatial Correlation Process 38
3.9 Summary 39

CHAPTER FOUR: RESULTS AND ANALYSIS

4.1 Introduction 40
4.2 Review of Dengue Cases in Malaysia 40
 4.2.1 Distribution of Dengue Cases in 2013, 2014 and 2015 40
 4.2.2 Hotspot Location of Dengue Cases in 2013, 2014 and 2015 41
 4.2.3 Analysis of Hotspot Location 41
4.3 Distribution of Dengue Cases in Selangor 42