SUSTAINABLE PHYTOREMEDIATION SYSTEM FOR MACRONUTRIENTS REMOVAL FROM DOMESTIC WASTEWATER

ZUL HILMI BIN SAIDIN

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Civil Engineering

January 2016
AUTHOR’S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student : Zul Hilmi Bin Saidin
ID No. : 2010239602
Programme : Master of Science (Civil Engineering)
Faculty : Civil Engineering
Thesis Title : Sustainable Phytoremediation System for Macronutrients Removal from Domestic Wastewater

Signature of Student : ..
Date : January 2016
ABSTRACT

Phytoremediation system employed aquatic macrophytes to reduce, remove and/or to extract the load of macronutrient contaminants. However, there are very limited studies that focusing on ability of local aquatic macrophytes in removing and accumulating macronutrients. Furthermore, it is still lack in post-harvesting management of the macrophytes where the phytoremediated macrophytes were directly disposed to the landfill site. Therefore, the objectives of this study were to identify local aquatic macrophytes that capable in removing macronutrients from domestic wastewater by using phytoremediation system, and subsequently capacity of local aquatic macrophytes in accumulating and distributing the macronutrients from domestic wastewater into their structures were determined. This study also initiatively produce the phyto–organic fertilizers (PhytoLizer) originating from phytoremediated aquatic macrophytes through the windrow composting process. The research works conducted in this study were divided into three (3) Phases. Phase 1 focusing on the identification of macrophytes’ performance in removing macronutrients from domestic wastewater. Phase 2 focusing on the accumulation and distribution of macronutrients in macrophytes structures. Phase 3 focusing on the management of phytoremediated macrophytes in post-harvesting period and development of organic fertilizer (PhytoLizer). The results indicated that macrophytes have the capability to remove 94.38% of total nitrogen, 60.00% of nitrate and 88.66% of total phosphorous remarkably from the domestic wastewater. Conversely they also have the capability to accumulate and translocate the 52.40% of potassium and 41.71% of sulfate throughout their body structures. Besides, PhytoLizer showed ability to maintain macronutrients throughout the composting period. Thereby PhytoLizer surpassed the minimum macronutrients requirement practiced by the commercial organic fertilizer which included green manure bases. In conclusion, the results of this study are significant for integrated sustainable approach for phytoremediation of domestic wastewater which would satisfy the aspects of macronutrient criteria wholly. Henceforth phytoremediation process becomes an alternative way to compete with the other green technologies for national development.
TABLE OF CONTENTS

CONFIRMATION BY PANEL OF EXAMINERS ii
AUTHOR'S DECLARATION iii
ABSTRACT iv
ACKNOWLEDGEMENT v
TABLE OF CONTENTS vi
LIST OF TABLES xi
LIST OF FIGURES xiii
LIST OF ABBREVIATIONS xv

CHAPTER ONE: INTRODUCTION 1
1.1 Background 1
1.2 Problem Statement 3
1.3 Objectives of Study 4
1.4 Significant of Study 5
1.5 Scope of the Study 6
1.6 Limitation of Study 7

CHAPTER TWO: LITERATURE REVIEW 8
2.1 Introduction of Phytoremediation Technology 8
 2.1.1 Advantages and Constrains of Phytoremediation Technology 9
2.2 Overview of Research Findings on Phytoremediation of Macronutrients 10
2.3 Mechanisms of Macronutrients Removal by Phytoremediation Process 11
 2.3.1 Phytoextraction or Phytoaccumulation 12
 2.3.2 Phytostabilization 14
 2.3.3 Phytovolatilization 15
 2.3.4 Phytotransformation 15
 2.3.5 Rhizofiltration 16
2.3.6 Phytostimulation 17
2.3.7 Phytodesalination 17
2.3.8 Combined Mechanisms 18

2.4 Removal and Accumulation Efficiency of Macronutrient Contaminants by Phytoremediation Process
2.4.1 Total Nitrogen (TN) and Nitrate (NO₃⁻) 20
2.4.2 Total Phosphorous (TP) 23
2.4.3 Potassium (K) 24
2.4.4 Sulphur (S) 24

2.5 Uptake and Accumulation Efficiency of Macronutrient Contaminants by Phytoremediation Process 25

2.6 Potential of Local Aquatic Macrophytes as Phytoremediator of Macronutrients
2.6.1 Physical and Biomass Growth of Aquatic Macrophytes during Phyto-Process 30
2.6.2 Current Management of Phytoremediated Aquatic Macrophytes 32

2.7 Overview of Macronutrient Contaminants: Sources, Characteristics and Effect
2.7.1 Macronutrient Contaminants in Domestic and Industrial Wastewater 35
2.7.2 Sources, Strength and Characteristics of Macronutrient Contaminants in Domestic Wastewater 36
2.7.3 Impact of Macronutrient Contaminations to Human Health and Surrounding Environment 40
2.7.4 Conventional Treatment of Macronutrient Contaminants 42
2.7.5 International and Malaysian Standards of Macronutrient Contaminants for Effluent and Drinking Water 43

2.8 Windrow Composting Process of Green Materials 45
2.8.1 Windrow Composting Process 45
2.8.2 Macronutrient Properties of Organic Compost 46
2.8.3 Organic Fertilizer as Sustainable Element in Agriculture 48