DEVELOPMENT OF A NEW COATING RAW MATERIAL BASED ON A MIXTURE OF EPOXIDIZED PALM OLEIN AND DIGLYCIDYL ETHER OF BISPHENOL A

REIHAN BINTI MOHD TAHARIM

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Chemical Engineering

January 2014
AUTHOR’S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student : Reihan binti Mohd Taharim

Student I.D. No. : 2010139475

Programme : Master of Science (Chemical Engineering) by Research

Faculty : Chemical Engineering

Thesis Title : Development of a New Coating Raw Material Based on a Mixture of Epoxidized Palm Olein and Diglycidyl Ether of Bisphenol A

Signature of Student : ...

Date : January, 2014
ABSTRACT

Epoxy coatings are highly in demand due to their excellent corrosion protective properties. Currently, raw materials for epoxy coatings mainly originate from diglycidyl ether of bisphenol A (DGEBA), a compound derived from petrochemicals. However, health concerns associated with bisphenol A, combined with the limited supply of petroleum are driving researchers to look for alternative raw materials. Plant oils are considered as potential alternative resources to generate more environmentally-friendly coating formulations. This study aims to investigate the possibility of developing a new raw material for coating using a mixture of epoxidized palm olein (EPO) and DGEBA, and subsequently evaluate the resulting coating film’s properties and performance. The main study was done in four stages. In the first stage, coatings containing 0-30 wt. % EPO were formulated and applied on mild steel plates. The coating was then tested for adhesion, hardness, chemical resistance, water resistance and solvent resistance. The third and final stages consisted of EIS study and performance tests, respectively. The EIS study shows that the corrosion protection from EPO is comparable to that of a conventional epoxy coating. Natural weathering test was carried out for 90 days while a cyclic salt fog/UV exposure test took place for 30 days. EPO30 did not show any sign of rusting or blistering upon exposure to both weathering conditions. Weathering study indicated that EPO imparted to the EPO/epoxy coating a higher tendency to discolor upon weathering in comparison on conventional epoxy coatings. Nonetheless, EIS response and weathering test results suggested that EPO30 performed as well as conventional epoxy coatings in protecting metallic substrates from corrosion.
TABLE OF CONTENTS

AUTHOR’S DECLARATION ii
ABSTRACT iii
ACKNOWLEDGEMENTS iv
TABLE OF CONTENTS v
LIST OF TABLES viii
LIST OF FIGURES x
LIST OF PLATES xiii
LIST OF ABBREVIATIONS xiv
LIST OF SYMBOLS xvi

CHAPTER ONE: INTRODUCTION
1.1 Research Background 1
1.2 Problem Statements 3
1.3 Objectives 3
1.4 Hypothesis 4
1.5 Scope of Research 4
1.6 Significance of Study 5
1.7 Thesis Outline 5

CHAPTER TWO: LITERATURE REVIEW
2.1 Organic Coatings 6
2.2 Corrosion Protection by Organic Coatings 9
2.3 Adhesion 10
2.3.1 Mechanical Interlocking 11
2.3.2 Chemical Adhesion 12
2.3.3 Practical Adhesion 13
2.3.4 Measurement of Practical Adhesion 14
2.4 Toughness 16
2.5 Hardness 17
2.6 Solvent Resistance 18
2.7 Electrochemical Impedance Spectroscopy 18
2.8 Common Coating Failures 24
2.9 Causes of Coating Failures 28
2.10 Chemistry of Epoxies 31
2.11 Renewable Raw Materials 35
2.12 Epoxidized Palm Olein 39

CHAPTER THREE: METHODOLOGY
3.1 Materials 44
3.2 Spectral Analysis 45
3.3 Formulation of Binders 45
3.4 Preparation of Test Panels 46
3.5 Study of EPO Level and Curing Method 47
3.6 Study of Curing Temperature 48
3.7 Impedance Study 51
3.8 Performance Test 52

CHAPTER FOUR: RESULTS AND DISCUSSIONS
4.1 Spectral Analysis of Raw Materials 54
4.2 Formulation of Binders 58
4.3 Study of EPO Level and Curing Method 62
4.4 Study of Curing Temperature 70
4.4.1 Adhesion 71
4.4.2 Impact 72
4.4.3 Chemical Resistance 76