PRESSURISED HOT WATER EXTRACTION (PHWE) OF NATURAL COLORANTS FROM THE HEARTWOOD OF XYLOCARPUS MOLUCCENSIS AND ITS DYEING CHARACTERISTICS ON DIFFERENT FABRICS

NURSYAMIRAH ABD RAZAK

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Applied Sciences

February 2014
AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and the result is of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any other degree qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student : Nursyamirah binti Abd Razak
Student's ID No. : 2009296332
Programme : Master of Science (Analytical Chemistry)
Faculty : Applied Science
Thesis Title : Pressurised hot water extraction (PHWE) of natural colorants from the heartwood of *Xylocarpus moluccensis* and its dyeing characteristics on different fabrics.

Signature of Student :
Date : February 2014
ABSTRACT

A remarkable growth of public awareness towards environmental pollution caused by the synthetic dyes resulted in an increased demand of natural dyes which led to the exploration of potential plants as source for natural dyes. Traditionally, natural dyes were extracted by soaking or boiling method which requires long extraction time and plenty of water. Hence, there is a demand to exploit suitable efficient techniques to extract natural dyes from the plant materials. One of the potential plants is *Xylocarpus moluccensis* (Nyireh batu) species which can be found in mangroves forest around Peninsular Malaysia. In this study, a pressurised hot water extraction (PHWE) technique was employed to selectively extract natural dyes from the *Xylocarpus moluccensis* heartwood at different elevated temperature from 50 °C to 150 °C. This technique is more efficient and environmental friendly method and may increase productivity of natural dyes for dyeing fabrics. The dye extracts were then used to dye fabrics such as cotton, silk and viscose rayon with the addition of 3% mordant such as paddy husk ash (PHA), vinegar and alum. Each of dyed fabrics was analysed to determine its dyeability and dyeing properties. Based on the experiment, colour attained (h°) on cotton and viscose rayon was varied from 3° to 48° and 6° to 48° respectively. However, the h° of silk fabrics ranges between 40° to 48° (brownish colour). PHA and vinegar were observed to give high colour intensity (C*) and colour strength (K/S) to dyed silk compared to alum. In contrast, cotton and viscose rayon had better colour strength (K/S) and colour intensity (C*) when mordanted with alum compared to natural mordant. Based on colour fastness test, viscose rayon had the best colour fastness to washing and perspiration compared to cotton and silk although the K/S and the C* were low. The colorant compounds were extracted by soaking with methanol and dichloromethane followed by purification on a polyamide solid phase extraction cartridge prior to gas chromatography mass spectrometry (GC-MS) and Fourier Transform Infra Red (FT-IR) spectroscopy analysis. It was found that, the heartwood extracts contained mainly quinoline and anthraquinone moieties in their molecules.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTHOR'S DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>x</td>
</tr>
</tbody>
</table>

CHAPTER ONE: INTRODUCTION

1.1 BACKGROUND OF STUDY 12
1.2 PROBLEM STATEMENT 2
1.3 OBJECTIVES OF STUDY 3
1.4 SCOPES AND LIMITATIONS OF STUDY 4
1.5 SIGNIFICANCE OF STUDY 4

CHAPTER TWO: LITERATURE REVIEW

2.1 NATURAL DYES/COLORANTS 6
 2.1.1 Extraction Methods for Natural Dyes 8
 2.1.1.1 Open-boiling Method 8
 2.1.1.2 Pressurised Hot Water Extraction (PHWE) Method 9
2.2 TYPES OF FABRICS IN TEXTILE DYEING 10
 2.2.1 Natural Fibres 10
 2.2.1.1 Cellulose Fibres 11
 2.2.1.2 Protein Fibres 11
 2.2.2 Regenerated Fibres 12
2.3 TYPES OF MORDANT 14
 2.3.1 Chemical Mordant 15
 2.3.2 Natural Mordant 15
CHAPTER THREE : MATERIALS AND METHODS

3.1 RAW SAMPLE 17
3.2 CHEMICALS AND MATERIALS 17
3.3 OPTIMISATION OF THE EXTRACTION METHODS 18
 3.3.1 Open Boiling Method 18
 3.3.2 Pressurised Hot Water Extraction (PHWE) Method 18
3.4 FABRICS DYEING 19
 3.4.1 Mordanting and Dyeing Fabrics 19
3.5 ANALYSIS METHODS 19
 3.5.1 Identification of Colorants Using GC-MS 19
 3.5.2 Determination of Functional Group Using FT-IR 20
 3.5.3 UV-Visible Analysis 20
 3.5.4 pH and Dry Weight Measurement 20
 3.5.5 Colour Measurement of Crude Extracts Obtained by PHWE Method 20
 3.5.6 Colour Fastness Tests 21
 3.4.6.1 Colour Fastness Test to Washing 22
 3.4.6.2 Colour Fastness Test to Perspiration 22
 3.5.7 Hue Angle (h°) and Colour Strength (K/S) Analysis 23
3.6 FLOWCHART OF ACTIVITIES 24

CHAPTER FOUR : EVALUATION ON DYEING PROPERTIES OF NATURAL DYES FROM XLOCARLPUS MOLUCCENSIS

4.1 PRESSURISED HOT WATER EXTRACTION (PHWE) 26
 4.1.1 Optimization of PHWE Method 27
 4.1.1.1 Effect of Static Time at Different Temperature 27
 4.1.1.2 Effect of Temperature on the Absorbance 27
 4.1.1.3 Effect of Extraction Temperature on Extracts Yield 28
 4.1.1.4 Effect of Extraction Temperature on pH 29
 4.1.1.5 Effect of Temperature on the Colour of Natural Dyes 30
4.2 DYEING PROPERTIES OF DYED FABRICS 32
 4.2.1 Colour Measurement of Dyed Fabrics 32