UNIVERSITI TEKNOLOGI MARA

SEISMIC PERFORMANCE OF INSULATED SANDWICH WALL PANEL UNDER REVERSIBLE CYCLIC LOADING

NOOR SYAEEKHA BINTI MOHAMAD SAKDUN

Dissertation submitted in partial fulfillment of the requirement for the degree of Master in Civil Engineering (Structure)

Faculty of Civil Engineering

December 2011
AUTHOR'S DECLARATION

I declare that the work in this dissertation was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This topic has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

In the event that my dissertation be found to violate the conditions mentioned above, I voluntarily waive the right of conferment of my degree and agree be subjected to the disciplinary rules and regulations of Universiti Teknologi MARA.

Name of Candidate : Noor Syafeekha Binti Mohamad Sakdun
Candidate I.D. No. : 2010243024
Programme : Master in Civil Engineering (Structure)
Faculty : Civil Engineering
Thesis Tittle : Seismic Performance of Insulated Sandwich Wall Panel under Reversible Cyclic Loading
Signature of Candidate: ..
Date : December 2011
ABSTRACT

This research study summarises the seismic performance of insulated sandwich wall panel (ISWP). A test was carried out to determine its lateral strength capacity. Load-lateral deformation hysteretic response and hysteresis energy damping were discussed and analysed. One specimen of Polyurethane Sandwich Wall Panel (PSWP) namely WS1 was tested under in-plane quasi-static lateral cyclic loading started with a small percent of ±0.01% drift and were increased gradually until the strength capacity is achieved.

The ultimate strength recorded for WS1 was 5.6 kN. The visual observation and experimental results showed that the cracks start to occur at +0.3% (both at pushing direction) at the wall-foundation joint. However, WS1 was observed did not have any defect on the surface of wall but the buckling failure at the aluminium frame was occurred. Overall, WS1 did not suffer any yielding condition due to very low of stresses applied.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>viii</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

1.1 Background of study 1
1.2 Problem Statement 4
1.3 Objective 5
1.4 Scope of Study 5
1.5 Significant of Study 6

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction 8
2.2 Structural Insulated Panel (SIP) 9
 2.2.1 Insulated Sandwich Wall Panel (ISWP) 13
 2.2.1.1 Connection of Joint 14
 2.2.1.2 Installation Method (in Design of Terrace House) 17
 2.2.2 Understanding R-Value 19
2.3 Industrialised Building System (IBS) 23
 2.3.1 Component and Classification of IBS System 21
 2.3.2 Advantages and Disadvantages of IBS 25
2.4 Green Building 26
 2.4.1 Green Building Index (GBI) 28
2.5 Basic Requirement of Seismic Code 28
2.6 Application of Hysteresis Loops 30

CHAPTER 3: METHODOLOGY

3.1 Introduction 32
3.2 Experimental Program 33
 3.2.1 Preparing of Foundation Beam and Gravity Concrete Block 33
 3.2.2 Size of the specimen 33
 3.2.3 Casting of Reinforced Concrete Structure 35
 3.2.4 Sandwich Wall Element 37
CHAPTER 4: EXPERIMENTAL RESULTS, DATA ANALYSIS AND DISCUSSIONS

4.1 Introduction 44
4.2 Material Properties 44
4.3 Experimental Results and Visual Observations 45
4.4 Analysis of Experimental Results 49
 4.4.1 Hysteresis Loops 49
 4.4.1.1 Data analysis for WS1 49
4.5 Hysteresis Loops Analysis 54
 4.5.1 Stiffness and Ductility 56
 4.5.2 Hysteresis Energy Dissipation 57

CHAPTER 5: CONCLUSION AND RECOMMENDATION

5.1 General 59
5.2 Conclusions 59
5.3 Recommendations for Future Work 61

REFERENCES

APPENDICES