UNIVERSITI TEKNOLOGI MARA

METABOLOMICS STUDY OF CARBAMAZEPINE INDUCED OXIDATIVE STRESS AND POTENTIAL ROLE OF TOCOTRIENOL RICH FRACTION

MOHD IKHWAN ISMAIL

Thesis submitted in fulfilment of the requirement for the degree of Master of Science

Faculty of Pharmacy

February 2014
I declare that the work in this thesis was carried out in accordance with the regulations of University Teknologi MARA. It is original and the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic or non-academic institution for any other degree or qualification.

I, hereby acknowledge that I have been supplied with the Academic Rules and Regulations for Postgraduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student : Mohd Ikhwan Bin Ismail
Student I.D. No. : 2009559217
Programme : Master of Science
Faculty : Faculty of Pharmacy
Title : Metabolomics study of carbamazepine induced oxidative stress and potential role of tocotrienol rich fraction
Signature of Student : ...
Date : February 2014
ABSTRACT

Carbamazepine is mainly used in the treatment of epilepsy, bipolar disorder and trigeminal neuralgia. However, it causes severe adverse drug reactions which include Steven Johnson Syndrome and/or Toxic Epidermal Necrolysis. Mechanisms leading to the adverse effects are hypothesised to involve production of reactive metabolites which deplete the antioxidant enzymes and therefore subjecting the individuals to oxidative stress. Hence, this study aims to determine the changes in the metabolism pathways involved in CBZ therapy which changes in the metabolite profiles of rats treated with different doses of CBZ were investigated and administration of tocotrienol rich fraction (TRF) were also studied to understand the potential roles of TRF in reducing the side effects of CBZ. Thirty-six (36) SD rats were used in this study. Three (3) different doses of CBZ, one (1) dose of CBZ+TRF and one (1) control (1 mL of normal saline) were given orally to 5 groups of SD rats. All sera and organs were collected after day 7th of treatments. All samples were subjected to biochemical assays (liver function test, lipid peroxidation and antioxidant) and metabolomic analysis using LCMS-QTOF platform. Based on the metabolite profiling and metabolic pathway analysis, CBZ treated rats showed perturbation in the metabolism of four (4) metabolic pathways which include tryptophan, glutathione, purine and arginine-proline metabolism. These four (4) metabolic pathways in the treatment of CBZ which is related to the oxidative phosphorylation or oxidant-antioxidant balance system. On the other hand, TRF was found to have effects on the CBZ treated rats by restoring the antioxidant capacities via the four (4) major metabolic pathways mentioned above.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTHOR'S DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER ONE: INTRODUCTION

1.1 Background of the Study 1
1.2 Statement of Research Problems 4
1.3 Objectives 4

CHAPTER TWO: LITERATURE REVIEW

2.1 Carbamazepine (CBZ, 5H-dibenzo[b,f]azepine-5-carboxamide) 5
 2.1.1 Pharmacology of CBZ 5
 2.1.2 Metabolism of CBZ 6
 2.1.3 Side Effects and Adverse Effects of CBZ Treatment 8
 2.1.4 CBZ Induced-Hypersensitivity Reactions 9
 2.1.5 Oxidant-Antioxidant Disturbance on the CBZ Treatment 11
2.2 Antioxidant 12
 2.2.1 Vitamin E (Tocopherol and Tocotrienol) 13
2.3 Metabolomics 14
 2.3.1 Global Metabolomic and Targeted Metabolomic Approaches 17
 2.3.2 Discovery of Mechanisms and Biomarkers in Metabolomics 18
2.4 Clinical Impact of Metabolomics in Adverse Drug Reactions (ADR) Studies

2.5 The Emergence of Carbamazepine, Antioxidant and Metabolomics Studies

CHAPTER THREE: RESEARCH METHODOLOGY

3.1 General overview

3.2 Methods

3.2.1 Animal

3.2.2 Carbamazepine Preparations

3.2.3 Treatment

3.2.4 Blood Sampling, Terminal Procedure, and Harvesting Organs

3.2.5 Liver Function Test for Serum

3.2.6 Measurement of Oxidative Stress

3.2.6.1 Thiobarbituric Acid Reactive Substance (TBARS) Assay

3.2.6.2 Antioxidant assay

3.2.7 Metabolites Extraction

3.2.7.1 Serum

3.2.7.2 Organs

3.2.8 Chromatography

3.2.9 Mass Spectrometry

3.2.10 Data Pre-Processing (Molecular Feature Extraction - MFE)

3.2.11 Binned List of Features

3.2.12 Data Pre-Treatment

3.2.13 Recursive Analysis

3.2.14 Metabolite Profiling Analysis

3.2.15 Metabolite Set Enrichment Analysis – Pathway Analysis

3.2.16 Statistical Analysis

CHAPTER FOUR: RESULTS

4.1 Weight