UNIVERSITI TEKNOLOGI MARA

HYDROXAMIC ACID SERIES AND THEIR METAL COMPLEXES: SYNTHESIS, CHARACTERIZATION, CYTOTOXICITY AND NEUROTOXICITY STUDY

SITI NORIAH BT MOHD SHOTOR

Thesis submitted in Fulfillment of the requirements for the degree of Master of Science

Faculty of Applied Sciences

April 2014

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This topic has not been submitted to any other academic institution or non-academic institution for any other degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of student	:	Siti Noriah Bt Mohd Shotor
Student ID No .	:	2008731269
Programme	:	Master of Science (Inorganic Chemistry) AS780
Faculty	:	Faculty of Applied Sciences
Title	÷	Hydroxamic acid series and their metal complexes: Synthesis, characterization, cytotoxicity and neurotoxicity study
Signature of candidate	:	
Date	:	April 2014

ABSTRACT

The synthesis and characterization of a series of hydroxamic acid namely benzohydroxamic acid (BHA), salicylhydroxamic acid (SHA) and their complexes with Cu(II), Co(II), V(IV), Zn(II), Fe(II), Ni(II) and Cr(III) are described herein. The characterization of the synthesized ligands and complexes were carried out by means of elemental analysis (C,H,N), ¹H and ¹³C NMR and IR spectroscopy, conductivity, magnetic susceptibility and melting point. Through IR and NMR studies, the synthesized ligands were shown to possess the carbonyl (CO) and hydroxylamine (NH₂-OH) groups, characteristics of hydroxamic acid. It was found that the dominant coordination mode in metal-hydroxamic acid complexes was the O,O'-bidentate chelates in which the ligands were singly deprotonated (hydroxamato). The coordination through the carbonyl oxygen atom and the deprotonated hydroxy group showed a very stable five-membered chelate was formed. Moreover, depending on pH, two (O, O) bonding modes of the ligands are accessible to a series of metal ions like Cu(II), Cr(III), Zn(II), Fe(II) and VO(IV) where in this case, the synthesis took place in acidic environment which making the O,O-bonding modes were more favorable. The non-conductivity of the complexes as DMSO solutions indicated the absence of counter ions. The diamagnetic nature of the Ni(II) complex indicated that it has a square planar geometry whereas the paramagnetic Co(II) complex with magnetic moment of 4.04 B.M. indicated either high spin octahedral or tetrahedral geometry. Results of magnetic susceptibility studies of other complexes were also discussed herein in relation to their possible geometries. Cytotoxicity assay with fetal liver cells (WRL68) revealed the toxicity of the ligand 2,6-pyha with IC₅₀ at 23 μ M. Other ligands were founds to be non-toxic. Ni(II), Zn(II) and Cr(III) complexes of SHA were found to be non-toxic to the cells whereas V(IV), Cu(II) and Co(II) complexes revealed IC₅₀ values at 25 μ M, 15 μ M and 60 μ M, respectively. Complex VO(BHA)₂ was found to be toxic to cells with IC_{50} value 10 μ M. Neurotoxicity testing on treated SHSY-5Y neuroblastoma cells showed that all ligands were found to be non-toxic to neuron cells at the concentration range of 1 nM to 1 mM. The complexes generally showed slightly increased neurotoxicity especially at higher concentration.

TABLE OF CONTENTS

AUTHOR'S DECLARATION	ii
ABSTRACT	ш
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	v
LIST OF TABLES	viii
LIST OF FIGURES	x
LIST OF ABBREVIATIONS	xiii

CHAPTER ONE: INTRODUCTION

1.1	Hydroxamic acids	1
1.2	Cytotoxicity	4
1.3	Neurotoxicity	5
1.4	Problem statements	6
1.5	Objectives of research	6
1.6	Scope of project/ limitation	7

CHAPTER TWO: LITERATURE REVIEW

2.1	Biolog	gical and medical aspects of hydroxamic acids and their metal	amic acids and their metal	
	complexes			
	2.1.1	Vanadium(IV) complexes	12	
	2.1.2	Chromium(III) complexes	14	
	2.1.3	Zinc(II) complexes	15	
2.2	Analysis			
	2.2.1	Elemental analysis	17	
	2.2.2	Infrared spectroscopy	18	
	2.2.3	Nuclear magnetic resonance (NMR)	18	
	2.2.4	Magnetic susceptibility	20	
	2.2.5	Single X-ray Diffraction Analysis	21	

CHAPTER THREE: METHODOLOGY

3.1	Mater	ials and reagents				
3.2	Instrun	nentation				
3.3	Synthe	nesis of Hydroxamic acid ligands				
	3.3.1	Synthesis of salicylhydroxamic acid (SHA)	25			
	3.3.2	Synthesis of 2 -pyridinehydroxamic acid (2-pyha)	25			
	3.3.2	Synthesis of 3-pyridinehydroxamic acid (3-pyha)	26			
	3.3.3	Synthesis of benzohydroxamic acid (BHA)	26			
3.4	Synthe	Synthesis of complexes				
	3.4.1	Preparation of [VO(SHA) ₂].7H ₂ O	27			
	3.4.2	Preparation of [Cr(SHA) ₂ (H ₂ O) ₂].5H ₂ O	27			
	3.4.3	Preparation of [Zn(SHA) ₂].H ₂ O	28			
	3.4.4	Preparation of [Ni(SHA) ₂].3H ₂ O	28			
	3.4.5	Preparation of [Fe(SHA) ₂].2H ₂ O	29			
	3.4.6	Preparation of [Co(SHA) ₂ (H ₂ O) ₂]	29			
	3.4.7	Preparation of [Cu(SHA) ₂ (H ₂ O) ₂].H ₂ O	29			
	3.4.8	Preparation of VO(BHA) ₂	30			
3.5	Cytoto	Cytotoxicity				
	3.5.1	Materials	31			
	3.5.2	Instruments	31			
	3.5.3	Compounds tested	32			
	3.5.4	Preparation of culture medium EMEM	32			
	3.5.5	Preparation of Phosphate Buffer Saline (PBS)	32			
	3.5.6	Preparation of MTT solution	33			
	3.5.7	Preparation of sample stock solution	33			
	3.5.8	Tissue culture	33			
	3.5.9	Determination of total viable cell count using trypan blue	34			
	3.5.10	In vitro cytotoxicity assay	34			