Universiti Teknologi MARA

Color-Based Of Bird Species Classification Using Support Vector Machine

Nur Amalina Binti Nazery

Thesis submitted in fulfilment of the requirements for Bachelor of Computer Science (Hons.) Faculty of Computer and Mathematical Sciences

July 2017
STUDENT’S DECLARATION

I certify that this thesis and the project to which it refers is the product of my own work and that any idea or quotation from the work of other people, published or otherwise are fully acknowledged in accordance with the standard referring practices of the discipline.

..
NUR AMALINA BINTI NAZERY
2014696404

JULY 24, 2017
ABSTRACT

Bird classification is an important task in computer vision problem. The problem is to classify the images from the set of training images. Birds in images may also appeared in different situation such as in different sizes, different pose and angle of view. Therefore, this project proposed a prototype of bird species classification based on color features from bird images. There are three phases involved in this project which are data collection, processing (i.e feature extraction and classification) and post processing (i.e test and evaluation). For the data collection, 200 images from two different species of birds which are snowy owl and toucan has been collected from Datasets for Computer Vision Study website. All the bird image dataset are utilized as the train and test image data. The color moment extracted from the bird images in processing phase. There are nine color features experimented which are mean, standard deviation, and skewness. These nine color features are computed from the color component of red, green, and blue. The feature vectors of mean, standard deviation and skewness are then applied in Support Vector Machine to classify two group of bird species. The results proved that it significantly works on two bird species of Snowy Owl and Toucan to classify that bird images. Hence, this prototype significantly benefits to the users who are involved in ornithology and birdwatcher. In future, more features can be added in feature extraction process to produce more accurate result of classification.

Keywords— Bird Classification; Color Based Features Extraction; Support Vector Machine, Machine Learning; Algorithm.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CONTENT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERVISOR’S APPROVAL</td>
<td>ii</td>
</tr>
<tr>
<td>STUDENT’S DECLARATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>x</td>
</tr>
</tbody>
</table>

CHAPTER ONE : INTRODUCTION

1.1 Background of Study | 1 |
1.2 Problem Statement | 2 |
1.3 Objectives | 3 |
1.4 Scope | 3 |
1.5 Significances | 4 |
1.6 Organization of the Thesis | 5 |
1.7 Conclusion | 6 |

CHAPTER TWO : LITERATURE REVIEW

2.1 Introduction | 7 |
2.2 Bird Species | 7 |
2.3 Image Processing | 9 |
2.4 Feature Extraction | 10 |
2.4.1 Color Feature Extraction | 10 |
2.4.2 Texture Features Extraction | 13 |
2.4.3 Shape Features Extraction | 15 |
2.5 Bird Species Classification | 19 |
Support Vector Machine | 19 |
Artifical Neural Network | 20 |
K-Nearest Neighbor | 20 |
Morphological | 21 |
Template Matching | 22 |
Bag-of-Words Model 23

2.6 Conclusion 25

CHAPTER THREE : METHODOLOGY

3.1 Introduction 26
3.2 Framework 26
3.3 Data Collection 28
3.4 Feature Extraction 29
3.5 Bird Species Classification 34
3.6 Test and Evaluation 37
3.7 Hardware and Software Requirement 38
3.8 Conclusion 39

CHAPTER FOUR : PROTOTYPE DESIGN AND IMPLEMENTATION

4.1 Introduction 40
4.2 System Prototype 40
4.3 Conclusion 43

CHAPTER FIVE : RESULT AND DISCUSSION

5.1 Introduction 44
5.2 Color-Based Feature Extraction 44
5.3 Bird Species Classification 45
5.4 Conclusion 46

CHAPTER SIX : CONCLUSION AND FUTURE WORKS

6.1 Introduction 47
6.2 Summary of the Study 47
6.3 Strength and Limitation of the System 48
6.4 Recommendation and Future Work 49
6.5 Conclusion 49

REFERENCES 50

APPENDICES

APPENDIX A RESULT OF FEATURE EXTRACTION FOR SNOWY OWL 57
APPENDIX B RESULT OF FEATURE EXTRACTION FOR TOUCAN 62
APPENDIX C RESULTS OF CLASSIFICATION FOR SNOWY OWL 67
APPENDIX D RESULTS OF CLASSIFICATION FOR SNOWY OWL 88