A PROJECT REPORT SUBMITTED TO THE SCHOOL OF

ENGINEERING

IN PARTIAL FULFILMENT OF REQUIREMENT

FOR THE AWARD

OF AN

ADVANCED DIPLOMA IN CIVIL ENGINEERING

BEHAVIOUR OF REINFORCED CONCRETE

BEAM UNDER DYNAMIC LOADING

BY

AZMI BIN AZNAN

93746210

MAY 1996

ABSTRACT

The increase in use of high strength concrete (HSC) in modern construction is tremendously high. Thus its behaviour need to be understood clearly. The behaviour of high strength reinforced concrete beam (R.C Beam) under dynamic loading with respect to the serviceability and ultimate limits had been studied. Two R.C beams with minimum concrete strength of 60 N/mm² tested, one to failure under static load, while another tested to 3,000,000 cycles under sinusoidal repeated load with mean load of 45 kN (50% of yield load equivalent to 38% of ultimate load). Investigation on deflections, ultimate loads and cracks width were done.

TABLE OF CONTENTS

Contents			Page
ACKNOWL	EDGE	MENT	i
TABLE OF CONTENTS			ü
LIST OF SY	MBO	LS	vii
LIST OF TABLES			ix
LIST OF FI	GURE	S	x
LIST OF PI	ATES		xi
ABSTRACT			xii
CHAPTER	1	INTRODUCTION	
	1.1	Scope Of Study And Objective	1
CHAPTER	2	LITERATURE REVIEW	
	2.1	High Strength Concrete (HSC)	2
	2.2	Cracking	3
		2.2.1 Cracking Phenomena Under Static Load	3
		2.2.2 Cracking Mechanisms	5

	2.2.3 Crack Width In Reinforced Concrete Beam			
	(RC Beam)	6		
2.2.3.1 Crack Width Under Static Load				
	2.2.3.2 Crack Width Under Dynamic Load			
	& Fatigue	9		
2.3	Deflection	11		
	2.3.1 Behaviour Of Flexural Member Under Deflection	11		
	2.3.2 Method For Computing Deflection	12		

CHAPTER 3 DESIGN CONDITION

3.1	Concrete Mix Design	16	
3.2	Mix Design		
	3.2.1 Type Of Cement	17	
	3.2.2 Water Content	17	
	3.2.3 The Compressive Strength Of Concrete	18	
	3.2.4 Type Of Mixing		
	3.2.5 Age At Test And Curing Conditions	18	
	3.2.6 Cement Strength	18	
	3.2.7 Type Of Cement	19	
	3.2.8 Durability Of Concrete	19	

Contents

		3.2.9 The Mix Design Process	19
	3.3	Design Of Reinforced Concrete Beam Specimen	20
CHAPTER	4	EXPERIMENTAL WORK	
CHAFTER	4	EXPERIMENTAL WORK	
	4.1	Experimental Set-Up	28
	4.2	Material	28
		4.2.1 Cement	29
		4.2.2 Coarse And Fine Aggregate	29
		4.2.3 High Yield Deformed And Mild Steel Bars	29
	4.3	Preparation Of Specimens	30
	4.4	Fabrication Of Specimens	30
		4.4.1 Steel Reinforcement Cage	31
		4.4.2 Casting Of Beam Specimens	31
	4.5	Concrete Control Specimens	32
	4.6	Experimental Procedure	33
		4.6.1 Position Of Strain Gauges	33
		4.6.2 Testing Equipment	34
		4.6.3 Detail Of The Set-up	34
		4.6.4 Static Loading	35
		4.6.5 Dynamic Loading	36