A FINAL PROJECT REPORT BACHELOR IN ENGINEERING (HONS)(CIVIL) FACULTY OF CIVIL ENGINEERING UNIVERSITI TEKNOLOGI MARA SHAH ALAM

FLEXURAL BEHAVIOR OF REINFORCED CONCRETE BEAM WITH POLYPROPYLENE UNDER STATIC LOAD

BY

ZAINAL ABIDIN BIN MOHD. FAUZI

APRIL 2001

DECLARATION

I hereby declare that this has not been submitted, either in the same or different form, to this or any other university for a degree, I accept where reference is made to the work of other, it is believed to be original

.....

(ZAINAL ABIDIN BIN MOHD. FAUZI)

ABSTRACT

The increase in the use of the fiber reinforced concrete in modern construction is tremendously high. Thus, its behavior need to be understood clearly. In this project, the flexural behavior of reinforced concrete beam with additive of polypropylene under static load with respect to serviceability and ultimate limits were carried out. Two reinforced concrete beams with a characteristic strength of 30N/mm² have been casted and tested of which one of them with additive of fiber.

The results reveal that there were an improvement in cracking and deflection when Polypropylene fiber added to the reinforced concrete beam besides reduced the number of cracking to the Beam. From the experimental, it showed that the modulus of elasticity for the Fiber Reinforced concrete beam was 30.4KN/mm² while for the reinforced concrete beam without Polypropylene fiber was 20.29KN/mm².

Regarding to these results, it is recommended to use the Polypropylene fiber as an additive to the concrete since it can reduce the cracking and deflection of the elements.

TABLE OF CONTENTS

ITEM	PAGE
DECLARATION	
ABSTRACT	i
ACNOWLEDGEMENT	ii
TABLE OF CONTENT	iii
LIST OF FIGURES	viii
LIST OF GRAPH	ix
LIST OF PHOTOS	X
LIST OF TABLES	xi
LIST OF SYMBOLS	xii

CHAPTER 1 INTRODUCTION

1.1	General	1
1.2	Objective of study	4
1.3	Scope of study	4

CHAPTER 2 LITERATURE REVIEW

2.1	Comparison of fibrous and plain mixes	5
2.2	Fiber optimization	6
2.3	Polymeric fibers	7
2.4	Properties of Polypropylene fibers	8
2.5	Behavior under Compression	10
2.6	Behavior under Flexure	10
2.7	Behavior under shear	11
2.8	Strong fiber in a brittle matrix	12

2.9	Mechanism of fibers contribution to bending	
2.10	Flexural toughness	15
2.11	Bond Strength	16
2.12	Impact properties	17
2.13	Durability	18

CHAPTER 3 DESIGN CONDITION

3.1	Concrete mix design				
3.2	Parameters affecting concrete quality				
3.3	Workability				
3.4	Factors affecting the workability of fresh concrete				
3.5	The mix design process				
3.6	Factors governing the selection of mix				
3.7	Trial mix				
3.8	Production of trial mix				
3.9	Design consideration for reinforced concrete				
3.10	Design of RC beam				
3.11	Loading analysis		28		
3.12	Shear force and bending moment diagram		30		
3.13	Design fo	r reinforcement	31		
	3.13.1	Design for tension bars	31		
	3.13.2	Design for compression bars	31		
	3.13.3	Design for shear link	32		
	3.13.4	Check for deflection	34		
	3.13.5	Check for cracking	35		
3.14	Reinforcement details				
3.15	Section A – A				